Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evidence for the involvement of endotheliai cell integrin αVβ3 in the disruption of the tumor vascuiature induced by TNF and IFN-γ

Abstract

Administration of tumor necrosis factor (TNF) and γ interferon (IFN-γ) to melanoma patients causes selective disruption of the tumor vascuiature but the mechanism of this disruption is unknown. Here we report that exposure of human endotheliai cells to TNF and IFN-γ results in a reduced activation of integrin αVβ3, an adhesion receptor that plays a key role in tumor angiogenesis, leading to a decreased αVβ3-dependent endotheliai cell adhesion and survival. Detachment and apoptosis of angiogenic endotheliai cells was demonstrated in vivo in melanoma metastases of patients treated with TNF and IFN-γ. These results implicate integrin αVβ3 in the anti-vascular activity of TNF and IFN-γ and demonstrate a new mechanism by which cytokines control cell adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carswell, E.A. et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 72, 3666–3670 (1975).

    Article  CAS  Google Scholar 

  2. Liénard, D., Ewalenko, P., Delmotte, J., Renard, N. & Lejeune, F.J. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma, J. Clin. Oncol. 10, 52–60 (1992).

    Article  Google Scholar 

  3. Lejeune, F.J. High dose recombinant tumour necrosis factor (rTNF alpha) administered by isolation perfusion for advanced tumours of the limbs: a model for biochemotherapy of cancer, Eur. J. Cancer 6, 1009–1016 (1995).

    Article  Google Scholar 

  4. Lienard, D. et al. Isolated perfusion of the limb with high-dose tumor necrosis factor-alpha (TNF-alpha), interferon gamma (IFN-γ) and melphalan for melanoma stage III. Results of a multi-centre pilot study. Melanoma Res. 4, Suppl. 1, 21–26 (1994).

    PubMed  Google Scholar 

  5. Renard, N. et al. von Willenbrand Factor release and platelet aggregation in human melanoma after perfusion with TNFα. J. Pathol. 176, 279–287 (1995).

    Article  CAS  Google Scholar 

  6. Renard, N. et al. Early endothelium activation and polymorphonuclear cell invasion preceed specific necrosis of human melanoma and sarcoma treated by intravascular high dose of Tumor Necrosis Factor alpha. Int. J. Cancer 57, 656–663 (1994).

    Article  CAS  Google Scholar 

  7. Enenstein, I. & Kramer, R.H. Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J. Invest. Dermatol. 103, 381–386 (1994).

    Article  CAS  Google Scholar 

  8. Brooks, P.C., Clark, R.A. & Cheresh, D.A. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264, 569–571 (1994).

    Article  CAS  Google Scholar 

  9. Max, R. et al. Immunohistochemical analysis of integrin alpha v beta 3 expression on tumor-associated vessels of human carcinomas. Int. J. Cancer 71, 320–324 (1997).

    Article  CAS  Google Scholar 

  10. Brooks, P.C. et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  CAS  Google Scholar 

  11. Brooks, P.C. et al. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822 (1995).

    Article  CAS  Google Scholar 

  12. Stromblad, S., Becker, I.C., M, Brooks, P.C. & Cheresh, D.A. Suppression of p53 activity and p21 WAF1 /CIP1 expression by vascular cell integrin alpha v beta 3 during angiogenesis. J. Clin. Invest. 98, 426–133 (1996).

    Article  CAS  Google Scholar 

  13. Defilippi, P. et al. Tumor necrosis factor alpha and interferon gamma modulate the expression of the vitronectin receptor (integrin beta 3) in human endothelial cells. J. Biol. Chem. 266, 7638–7645 (1991).

    CAS  PubMed  Google Scholar 

  14. Schwartz, M.A., Schaller, M.D. & Ginsberg, M.H. Integrins: emerging paradigms of signal transduction. Ann. Rev. Cell Dev. Biol. 11, 549–599 (1995).

    Article  CAS  Google Scholar 

  15. Clark, E.A. & Brugge, J.S. Integrins and signal transduction pathways: the road taken. Science 268, 233–239 (1995).

    Article  CAS  Google Scholar 

  16. Nobes, C.D. .& Hall, A. Rho, rac, and cdc42 CTPases regulate the assembly of multi-molecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  17. Smith, J.W., Piotrowicz, R.S. & Mathis, D. A mechanism for divalent cation regulation of beta 3-integrins. J. Biol. Chem. 269, 960–967 (1994).

    CAS  PubMed  Google Scholar 

  18. Honda, S. et al. Topography of ligand-induced binding sites, including a novel cation-sensitive epitope (APS) at the amino terminus, of the human integrin beta 3 subunit. J. Biol. Chem. 270, 11947–11954 (1995).

    Article  CAS  Google Scholar 

  19. Pelletier, A.J., Kunicki, T. & quaranta, V. Activation of the integrin alpha V beta 3 involves a discrete cation-binding site that regulates conformation. J. Biol. Chem. 271, 1364–1370 (1996).

    Article  CAS  Google Scholar 

  20. Meredith, J., Jr, Fazeli, B. & Schwartz, M.A. The extracellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953–961 (1993).

    Article  CAS  Google Scholar 

  21. Re, F. et al. Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J. Cell Biol. 127, 537–546 (1994).

    Article  CAS  Google Scholar 

  22. Frisch, S.M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    Article  CAS  Google Scholar 

  23. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–30 (1995).

    Article  CAS  Google Scholar 

  24. Lejeune, F. et al. Rationale for using TNF alpha and chemotherapy in regional therapy of melanoma. J. Cell. Biochem. 56, 52–61 (1994).

    Article  CAS  Google Scholar 

  25. Brooks, P.C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell 85, 683–693 (1996).

    Article  CAS  Google Scholar 

  26. Stromblad, S. & Cheresh, D.A. Cell adhesion and angiogenesis. Trends Cell Biol. 6, 462–468 (1996).

    Article  CAS  Google Scholar 

  27. Campbell, J.J., Qin, S., Bacon, K.B., Mackay, C.R. & Butcher, E.C. Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells. J. Cell Biol. 134, 255–266 (1996).

    Article  CAS  Google Scholar 

  28. Vassboth, F.S., Havnen, O.K., Heldin, C.H. & Holmsen, H. Negative feedback regulation of human platelets via autocrine activation of the platelet derived growth factor alpha receptor. J. Biol. Chem. 269, 13874–13879 (1994).

    Google Scholar 

  29. Dahl, S.C. & Crabel, L.B. Integrin phosphorylation is modulated during the differentiation of F-9 teratocarcinoma stem cells. J. Cell Biol. 108, 183–190 (1989).

    Article  CAS  Google Scholar 

  30. Adams, J.C. & Watt, F.M. Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes alpha 5 beta 1 integrin loss from the cell surface. Cell 63, 425–435 (1990).

    Article  CAS  Google Scholar 

  31. Neugebauer, K.M. & Reichardt, L.F. Cell-surface regulation of beta 1-integrin activity on developing retinal neurons. Nature 350, 68–71 (1991).

    Article  CAS  Google Scholar 

  32. Boettiger, D. et al. Regulation of integrin alpha 5 beta 1 affinity during myogenic differentiation. Dev. Biol. 169, 261–272 (1995).

    Article  CAS  Google Scholar 

  33. Hughes, P.E. et al. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 88, 521–530 (1997).

    Article  CAS  Google Scholar 

  34. Tominaga, T. et al. Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosyiation of the small molecular weight CTP binding protein, rho. J. Cell Biol. 120, 1529–1537 (1993).

    Article  CAS  Google Scholar 

  35. Saklatvala, J., Rawlinson, L.M., Marshall, C.J. & Kracht, M. Interleukin 1 and tumour necrosis factor activate the mitogen-activated protein (MAP) kinase kinase in cultured cells. Febs Letters 334, 189–192 (1993).

    Article  CAS  Google Scholar 

  36. Belka, C. et al. Tumor necrosis factor (TNF)-alpha activates c-raf-1 kinase via the p55 TNF receptor engaging neutral sphingomyelinase. Embo J. 14, 1156–1165 (1995).

    Article  CAS  Google Scholar 

  37. Xia, K. et al. The cytokine-activated tyrosine kinase JAK2 activates Raf-1 in a p21 ras-dependent manner. Proc. Natl. Acad. Sci. U.S.A. 93, 11681–11686 (1996).

    Article  CAS  Google Scholar 

  38. Doukas, J. & Pober, J.S. IFN-γ enhances endothelial activation induced by tumor necrosis factor but not IL-1. J. Immunol. 145, 1727–1733 (1990).

    CAS  PubMed  Google Scholar 

  39. Marfaing-Koka, A. et al. Regulation of the production of the RANTES chemokine by endothelial cells. Synergistic induction by IFN-γ plus TNF-a and inhibition by IL-4 and IL-13. J. Immunol. 154, 1870–1878 (1995).

    CAS  PubMed  Google Scholar 

  40. Pandita, R., Pocsik, E. & Aggarwal, B.B. Interferon-gamma induces cell surface expression for both types of tumor necrosis factor receptors. Febs Letters 312, 87–90 (1992).

    Article  CAS  Google Scholar 

  41. Ohmori, Y. & Hamilton, T.A. The interferon-stimulated response element and a kappa B site mediate synergistic induction of murine IP-10 gene transcription by IFN-γ and TNF-alpha. J. Immunol. 154, 5235–5244 (1995).

    CAS  PubMed  Google Scholar 

  42. Johnson, D.R. & Pober, J.S. HLA class I heavy-chain gene promoter elements mediating synergy between tumor necrosis factor and interferons. Molec. Cel. Biol. 14, 1322–1332 (1994).

    Article  CAS  Google Scholar 

  43. Lejeune, F.J., Lienard, D., Schraffordt Koops, H., Kroon, B. & Eggermont, A.M.M. Treatment of in-transit melanoma metastases with Tumor Necrosis Factor (TNF) and chemotherapy administered in isolated limb perfusion (ILP). Melanoma Res. 7, S48 (1997).

    Article  Google Scholar 

  44. Dighe, A.S., Richards, E., Old, L.J. & Schreiber, R.D. Enhanced in vivo growth and resistance to rejection of tumor cells expressing dominant negative IFN-γ receptors. Immunity 1, 447–456 (1994).

    Article  CAS  Google Scholar 

  45. Sato, T.N. et al. Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70–74 (1995).

    Article  CAS  Google Scholar 

  46. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  Google Scholar 

  47. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    Article  CAS  Google Scholar 

  48. Spertini, O. et al. Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial cell ligand to support leukocyte adhesion. J. Immunol. 147, 2565–2573 (1991).

    CAS  PubMed  Google Scholar 

  49. Gérain, J., Lienard, D., Ewalenko, P. & Lejeune, F.J. High serum levels of TNF-alpha after its administration for isolation perfusion of the limb. Cytokine 4, 585–591 (1992).

    Article  Google Scholar 

  50. Lahm, H. et al. Growth inhibition of human colorectal-carcinoma cells by inter-leukin-4 and expression of functional interleukin-4 receptors. Int. J. Cancer 59, 440–147 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rüegg, C., Yilmaz, A., Bieler, G. et al. Evidence for the involvement of endotheliai cell integrin αVβ3 in the disruption of the tumor vascuiature induced by TNF and IFN-γ. Nat Med 4, 408–414 (1998). https://doi.org/10.1038/nm0498-408

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0498-408

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing