Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation

Abstract

Bladder cancer is one of the most common cancers worldwide, with transitional cell carcinoma (TCC) being the predominant form. Here we report a genomic analysis of TCC by both whole-genome and whole-exome sequencing of 99 individuals with TCC. Beyond confirming recurrent mutations in genes previously identified as being mutated in TCC, we identified additional altered genes and pathways that were implicated in TCC. Notably, we discovered frequent alterations in STAG2 and ESPL1, two genes involved in the sister chromatid cohesion and segregation (SCCS) process. Furthermore, we also detected a recurrent fusion involving FGFR3 and TACC3, another component of SCCS, by transcriptome sequencing of 42 DNA-sequenced tumors. Overall, 32 of the 99 tumors (32%) harbored genetic alterations in the SCCS process. Our analysis provides evidence that genetic alterations affecting the SCCS process may be involved in bladder tumorigenesis and identifies a new therapeutic possibility for bladder cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Significantly mutated genes in TCC as determined by exome sequencing.
Figure 2: STAG2 somatic mutations and copy number changes in TCC.
Figure 3: FGFR3-TACC3 fusion was identified in TCC.
Figure 4: Frequent genetic alterations in genes from the cell cycle pathway in TCC.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Google Scholar 

  2. Wu, X.R. Urothelial tumorigenesis: a tale of divergent pathways. Nat. Rev. Cancer 5, 713–725 (2005).

    Article  CAS  Google Scholar 

  3. Gui, Y. et al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat. Genet. 43, 875–878 (2011).

    Article  CAS  Google Scholar 

  4. Cordon-Cardo, C. et al. p53 mutations in human bladder cancer: genotypic versus phenotypic patterns. Int. J. Cancer 56, 347–353 (1994).

    Article  CAS  Google Scholar 

  5. Jebar, A.H. et al. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene 24, 5218–5225 (2005).

    Article  CAS  Google Scholar 

  6. Cappellen, D. et al. Frequent activating mutations of FGFR3 in human bladder and cervix carcinomas. Nat. Genet. 23, 18–20 (1999).

    Article  CAS  Google Scholar 

  7. Platt, F.M. et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin. Cancer Res. 15, 6008–6017 (2009).

    Article  CAS  Google Scholar 

  8. Cairns, P., Proctor, A.J. & Knowles, M.A. Loss of heterozygosity at the RB locus is frequent and correlates with muscle invasion in bladder carcinoma. Oncogene 6, 2305–2309 (1991).

    CAS  PubMed  Google Scholar 

  9. Hornigold, N. et al. Mutation of the 9q34 gene TSC1 in sporadic bladder cancer. Oncogene 18, 2657–2661 (1999).

    Article  CAS  Google Scholar 

  10. Solomon, D.A. et al. Mutational inactivation of STAG2 causes aneuploidy in human cancer. Science 333, 1039–1043 (2011).

    Article  CAS  Google Scholar 

  11. Welch, J.S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012).

    Article  CAS  Google Scholar 

  12. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  13. Mhawech-Fauceglia, P., Cheney, R.T. & Schwaller, J. Genetic alterations in urothelial bladder carcinoma: an updated review. Cancer 106, 1205–1216 (2006).

    Article  CAS  Google Scholar 

  14. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl. Acad. Sci. USA 104, 20007–20012 (2007).

    Article  CAS  Google Scholar 

  15. Bertino, J.R., Goker, E., Gorlick, R., Li, W.W. & Banerjee, D. Resistance mechanisms to methotrexate in tumors. Oncologist 1, 223–226 (1996).

    CAS  Google Scholar 

  16. Williamson, M.P., Elder, P.A., Shaw, M.E., Devlin, J. & Knowles, M.A. p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum. Mol. Genet. 4, 1569–1577 (1995).

    Article  CAS  Google Scholar 

  17. Peset, I. & Vernos, I. The TACC proteins: TACC-ling microtubule dynamics and centrosome function. Trends Cell Biol. 18, 379–388 (2008).

    Article  CAS  Google Scholar 

  18. Singh, D. et al. Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235 (2012).

    Article  CAS  Google Scholar 

  19. Williams, S.V., Hurst, C.D. & Knowles, M.A. Oncogenic FGFR3 gene fusions in bladder cancer. Hum. Mol. Genet. 22, 795–803 (2013).

    Article  CAS  Google Scholar 

  20. Kiemeney, L.A. et al. A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer. Nat. Genet. 42, 415–419 (2010).

    Article  CAS  Google Scholar 

  21. Jacobs, B.L., Lee, C.T. & Montie, J.E. Bladder cancer in 2010: how far have we come? CA Cancer J. Clin. 60, 244–272 (2010).

    Article  Google Scholar 

  22. Kops, G.J., Weaver, B.A. & Cleveland, D.W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nat. Rev. Cancer 5, 773–785 (2005).

    Article  CAS  Google Scholar 

  23. Barber, T.D. et al. Chromatid cohesion defects may underlie chromosome instability in human colorectal cancers. Proc. Natl. Acad. Sci. USA 105, 3443–3448 (2008).

    Article  CAS  Google Scholar 

  24. Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009).

    Article  CAS  Google Scholar 

  25. Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).

    Article  CAS  Google Scholar 

  26. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  27. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

  28. Koboldt, D.C. et al. VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285 (2009).

    Article  CAS  Google Scholar 

  29. Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2012).

    Article  CAS  Google Scholar 

  30. Sjöblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  Google Scholar 

  31. Getz, G. et al. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317, 1500 (2007).

    Article  CAS  Google Scholar 

  32. Prestridge, D.S. Predicting Pol II promoter sequences using transcription factor binding sites. J. Mol. Biol. 249, 923–932 (1995).

    Article  CAS  Google Scholar 

  33. Li, L.C. & Dahiya, R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 18, 1427–1431 (2002).

    Article  CAS  Google Scholar 

  34. Rohde, C., Zhang, Y., Reinhardt, R. & Jeltsch, A. BISMA—fast and accurate bisulfite sequencing data analysis of individual clones from unique and repetitive sequences. BMC Bioinformatics 11, 230 (2010).

    Article  Google Scholar 

  35. Chiang, D.Y. et al. High-resolution mapping of copy-number alterations with massively parallel sequencing. Nat. Methods 6, 99–103 (2009).

    Article  CAS  Google Scholar 

  36. Charchar, F.J. et al. Whole genome survey of copy number variation in the spontaneously hypertensive rat: relationship to quantitative trait loci, gene expression, and blood pressure. Hypertension 55, 1231–1238 (2010).

    Article  CAS  Google Scholar 

  37. Yamada, N.A. et al. Visualization of fine-scale genomic structure by oligonucleotide-based high-resolution FISH. Cytogenet. Genome Res. 132, 248–254 (2011).

    Article  CAS  Google Scholar 

  38. Jia, W. et al. SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol. 14, R12 (2013).

    Article  Google Scholar 

  39. Zhang, B., Kirov, S. & Snoddy, J. WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res. 33, W741–W748 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Chinese High-Tech (863) Program (2012AA02A201 and 2012AA02A208), the Guangdong Innovative Research Team Program (2009010016), the State Key Development Program for Basic Research of China–973 Program (2011CB809203 and 2014CB745200) and the Shenzhen Municipal Government of China (JC201005260191A, CXB201108250096A, ZDSY20120615154448514 and BGI20100001).

Author information

Authors and Affiliations

Authors

Contributions

Jun Wang, Z.C., Jian Wang, H.Y., Y. Li, X. Zhang and Y.G. managed the project. X.S., S. Wu, Z. Li, A.T., X.L., Xiaokun Zhao, S.Z., M.Q., L. Xie, X. Zou, L. Xing, Z. Lv, H.M., C. Liang, J.L., C. Liu, C. Li, J.C., Y. Lai, Zheguang Lin and F. Zhou prepared the samples. P.H., P.S., F.F., Y.Y. and Xin Zhao performed the sequencing. G.G., C.C., Y.H., W.J., Q.Z., Z.Y., R.Y., Zhao Lin, S. Wan, M.L.N., M.D., S.G., Z.G., L.L., X.F., J.Y., F. Zhang, S.T. and D.T. performed the bioinformatic analysis. X.S., P.H., Z. Li, P.S., F.F., X.H., Z.J., H.C. and H.C.C. performed the validation of somatic mutations, CNAs and gene fusion events. G.G. wrote the manuscript. G.G., X.S., C.C., S. Wu, P.H. and Z. Li revised the manuscript.

Corresponding authors

Correspondence to Yaoting Gui, Jun Wang or Zhiming Cai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Figures 1–23 and Supplementary Tables 1, 2 and 5–14 (PDF 32390 kb)

Supplementary Table 3

Predicted somatic mutations in 99 TCC patients (XLSX 857 kb)

Supplementary Table 4

A list of all confirmed somatic mutations detected in 99 TCC patients (XLSX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, G., Sun, X., Chen, C. et al. Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet 45, 1459–1463 (2013). https://doi.org/10.1038/ng.2798

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2798

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing