Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene-expression profiling in epithelial ovarian cancer

Abstract

DNA-microarray technology has made it possible to simultaneously analyze the expression of thousands of genes in a small sample of tumor tissue. In epithelial ovarian cancer, gene-expression profiling has been used to provide prognostic information, to predict response to first-line platinum-based chemotherapy, and to discriminate between different histologic subtypes. Furthermore, DNA-microarray technology might permit identification of novel markers for early detection of disease and provide insights into the mechanisms of cancer growth and chemotherapy resistance. In this Review, we summarize the contributions of gene-expression profiling to the diagnosis and management of epithelial ovarian cancer and discuss ways in which this technique could become a useful tool in clinical management.

Key Points

  • Multigene signatures identified through microarray analysis can predict clinical outcome and response to first-line platinum-based chemotherapy in epithelial ovarian cancer

  • DNA-microarray technology has identified several genes that may be implicated in the development of resistance to carboplatin and paclitaxel, but only a few have been validated by functional studies or clinical correlation

  • Novel markers potentially useful for early detection of disease can be identified by gene-expression profiling, although such markers have not yet been clinically validated

  • Molecular profiles that distinguish between various histologic subtypes of epithelial ovarian cancer, as well as borderline (low malignant potential) tumors, have been discovered by gene-expression profiling

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of a typical oligonucleotide microarray experiment in epithelial ovarian cancer.
Figure 2: Example of how microarray analysis might someday be integrated into the postoperative management of patients with epithelial ovarian cancer.
Figure 3: Selected genes implicated in platinum resistance, as identified by microarray studies.
Figure 4: Contributions of gene-expression profiling to epithelial ovarian cancer research.

Similar content being viewed by others

References

  1. Jemal A et al. (2007) Cancer statistics, 2007. CA Cancer J Clin 57: 43–66

    Article  PubMed  Google Scholar 

  2. Cannistra SA (2004) Cancer of the ovary. N Engl J Med 351: 2519–2529

    Article  CAS  PubMed  Google Scholar 

  3. McGuire WP et al. (1996) Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 334: 1–6

    Article  CAS  PubMed  Google Scholar 

  4. Ozols RF et al. (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21: 3194–3200

    Article  CAS  PubMed  Google Scholar 

  5. Bristow RE et al. (2002) Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 20: 1248–1259

    Article  PubMed  Google Scholar 

  6. Thigpen T et al. (1993) Age as a prognostic factor in ovarian carcinoma: the Gynecologic Oncology Group experience. Cancer 71: 606–614

    Article  CAS  PubMed  Google Scholar 

  7. Baekelandt M et al. (1999) Clinical significance of apoptosis-related factors p53, Mdm2, and Bcl-2 in advanced ovarian cancer. J Clin Oncol 17: 2061

    Article  CAS  PubMed  Google Scholar 

  8. Kupryjanczyk J et al. (2003) Evaluation of clinical significance of TP53, BCL-2, BAX and MEK1 expression in 229 ovarian carcinomas treated with platinum-based regimen. Br J Cancer 88: 848–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nielsen JS et al. (2004) Prognostic significance of p53, Her-2, and EGFR overexpression in borderline and epithelial ovarian cancer. Int J Gynecol Cancer 14: 1086–1096

    Article  CAS  PubMed  Google Scholar 

  10. van Dam PA et al. (1994) Expression of c-erbB-2, c-myc, and c-ras oncoproteins, insulin-like growth factor receptor I, and epidermal growth factor receptor in ovarian carcinoma. J Clin Pathol 47: 914–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Golub TR (2001) Genome-wide views of cancer. N Engl J Med 344: 601–602

    Article  CAS  PubMed  Google Scholar 

  12. Elvidge G (2006) Microarray expression technology: from start to finish. Pharmacogenomics 7: 123–134

    Article  CAS  PubMed  Google Scholar 

  13. Tefferi A et al. (2002) Primer on medical genomics. Part III: microarray experiments and data analysis. Mayo Clin Proc 77: 927–940

    Article  CAS  PubMed  Google Scholar 

  14. Simon R (2005) Roadmap for developing and validating therapeutically relevant genomic classifiers. J Clin Oncol 23: 7332–7341

    Article  CAS  PubMed  Google Scholar 

  15. Ntzani EE and Ioannidis JP (2003) Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet 362: 1439–1444

    Article  CAS  PubMed  Google Scholar 

  16. Quackenbush J (2007) Extracting biology from high-dimensional biological data. J Exp Biol 210: 1507–1517

    Article  CAS  PubMed  Google Scholar 

  17. Ramaswamy S and Golub TR (2002) DNA microarrays in clinical oncology. J Clin Oncol 20: 1932–1941

    Article  CAS  PubMed  Google Scholar 

  18. Fan C et al. (2006) Concordance among gene-expression-based predictors for breast cancer. N Engl J Med 355: 560–569

    Article  CAS  PubMed  Google Scholar 

  19. Berchuck A et al. (2004) Prediction of optimal versus suboptimal cytoreduction of advanced-stage serous ovarian cancer with the use of microarrays. Am J Obstet Gynecol 190: 910–925

    Article  PubMed  Google Scholar 

  20. Berchuck A et al. (2005) Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin Cancer Res 11: 3686–3696

    Article  CAS  PubMed  Google Scholar 

  21. Hartmann LC et al. (2005) Gene expression profiles predict early relapse in ovarian cancer after platinum-paclitaxel chemotherapy. Clin Cancer Res 11: 2149–2155

    Article  CAS  PubMed  Google Scholar 

  22. Lancaster JM et al. (2004) Gene expression patterns that characterize advanced stage serous ovarian cancers. J Soc Gynecol Investig 11: 51–59

    Article  CAS  PubMed  Google Scholar 

  23. Spentzos D et al. (2004) Gene expression signature with independent prognostic significance in epithelial ovarian cancer. J Clin Oncol 22: 4700–4710

    Article  PubMed  Google Scholar 

  24. Rancano C et al. (1994) Genomic structure and subcellular localization of MAL, a human T-cell-specific proteolipid protein. J Biol Chem 269: 8159–8164

    Article  CAS  PubMed  Google Scholar 

  25. Tracey L et al. (2002) Identification of genes involved in resistance to interferon-alpha in cutaneous T-cell lymphoma. Am J Pathol 161: 1825–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu YL et al. (2003) Dual mechanisms for lysophosphatidic acid stimulation of human ovarian carcinoma cells. J Natl Cancer Inst 95: 733–740

    Article  CAS  PubMed  Google Scholar 

  27. Sotiriou C and Piccart MJ (2007) Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer 7: 545–553

    Article  CAS  PubMed  Google Scholar 

  28. Quackenbush J (2006) Microarray analysis and tumor classification. N Engl J Med 354: 2463–2472

    Article  CAS  PubMed  Google Scholar 

  29. Arts HJ et al. (1999) Drug resistance-associated markers P-glycoprotein, multidrug resistance-associated protein 1, multidrug resistance-associated protein 2, and lung resistance protein as prognostic factors in ovarian carcinoma. Clin Cancer Res 5: 2798–2805

    CAS  PubMed  Google Scholar 

  30. Reles A et al. (2001) Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res 7: 2984–2997

    CAS  PubMed  Google Scholar 

  31. van der Zee AG et al. (1995) Value of P-glycoprotein, glutathione S-transferase pi, c-erbB-2, and p53 as prognostic factors in ovarian carcinomas. J Clin Oncol 13: 70–78

    Article  CAS  PubMed  Google Scholar 

  32. Dressman HK et al. (2007) An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol 25: 517–525

    Article  CAS  PubMed  Google Scholar 

  33. Helleman J et al. (2006) Molecular profiling of platinum resistant ovarian cancer. Int J Cancer 118: 1963–1971

    Article  CAS  PubMed  Google Scholar 

  34. Selvanayagam ZE et al. (2004) Prediction of chemotherapeutic response in ovarian cancer with DNA microarray expression profiling. Cancer Genet Cytogenet 154: 63–66

    Article  CAS  PubMed  Google Scholar 

  35. Spentzos D et al. (2005) Unique gene expression profile based on pathologic response in epithelial ovarian cancer. J Clin Oncol 23: 7911–7918

    Article  CAS  PubMed  Google Scholar 

  36. Strobel T et al. (1998) BAX expression is associated with enhanced intracellular accumulation of paclitaxel: a novel role for BAX during chemotherapy-induced cell death. Cancer Res 58: 4776–4781

    CAS  PubMed  Google Scholar 

  37. Strobel T et al. (1996) BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway. Proc Natl Acad Sci USA 93: 14094–14099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bild AH et al. (2006) Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 6: 735–741

    Article  CAS  PubMed  Google Scholar 

  39. Bild AH et al. (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439: 353–357

    Article  CAS  PubMed  Google Scholar 

  40. Potti A et al. (2006) Genomic signatures to guide the use of chemotherapeutics. Nat Med 12: 1294–1300

    Article  CAS  PubMed  Google Scholar 

  41. Bani MR et al. (2004) Gene expression correlating with response to paclitaxel in ovarian carcinoma xenografts. Mol Cancer Ther 3: 111–121

    CAS  PubMed  Google Scholar 

  42. Goto T et al. (2006) Gene expression profiles with cDNA microarray reveal RhoGDI as a predictive marker for paclitaxel resistance in ovarian cancers. Oncol Rep 15: 1265–1271

    CAS  PubMed  Google Scholar 

  43. Li J et al. (2007) Gene expression response to cisplatin treatment in drug-sensitive and drug-resistant ovarian cancer cells. Oncogene 26: 2860–2872

    Article  CAS  PubMed  Google Scholar 

  44. Macleod K et al. (2005) Altered ErbB receptor signaling and gene expression in cisplatin-resistant ovarian cancer. Cancer Res 65: 6789–6800

    Article  CAS  PubMed  Google Scholar 

  45. Roberts D et al. (2005) Identification of genes associated with platinum drug sensitivity and resistance in human ovarian cancer cells. Br J Cancer 92: 1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim JS et al. (2005) The conventional nonsteroidal anti-inflammatory drug sulindac sulfide arrests ovarian cancer cell growth via the expression of NAG-1/MIC-1/GDF-15. Mol Cancer Ther 4: 487–493

    Article  CAS  PubMed  Google Scholar 

  47. Khabele D et al. (2004) Tumor necrosis factor-alpha related gene response to epothilone B in ovarian cancer. Gynecol Oncol 93: 19–26

    Article  CAS  PubMed  Google Scholar 

  48. Clarke PA et al. (2004) Characterisation of molecular events following cisplatin treatment of two curable ovarian cancer models: contrasting role for p53 induction and apoptosis in vivo . Br J Cancer 91: 1614–1623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng TC et al. (2006) Identification of genes whose expression is associated with cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol 58: 384–395

    Article  CAS  PubMed  Google Scholar 

  50. Sakamoto M et al. (2001) Analysis of gene expression profiles associated with cisplatin resistance in human ovarian cancer cell lines and tissues using cDNA microarray. Hum Cell 14: 305–315

    CAS  PubMed  Google Scholar 

  51. Samimi G et al. (2005) cDNA microarray-based identification of genes and pathways associated with oxaliplatin resistance. Cancer Chemother Pharmacol 55: 1–11

    Article  CAS  PubMed  Google Scholar 

  52. Jazaeri AA et al. (2005) Gene expression profiles associated with response to chemotherapy in epithelial ovarian cancers. Clin Cancer Res 11: 6300–6310

    Article  CAS  PubMed  Google Scholar 

  53. Hogg R and Friedlander M (2004) Biology of epithelial ovarian cancer: implications for screening women at high genetic risk. J Clin Oncol 22: 1315–1327

    Article  PubMed  Google Scholar 

  54. Meinhold-Heerlein I et al. (2007) An integrated clinical-genomics approach identifies a candidate multi-analyte blood test for serous ovarian carcinoma. Clin Cancer Res 13: 458–466

    Article  CAS  PubMed  Google Scholar 

  55. Mok SC et al. (2001) Prostasin, a potential serum marker for ovarian cancer: identification through microarray technology. J Natl Cancer Inst 93: 1458–1464

    Article  CAS  PubMed  Google Scholar 

  56. Kim JH et al. (2002) Osteopontin as a potential diagnostic biomarker for ovarian cancer. JAMA 287: 1671–1679

    Article  CAS  PubMed  Google Scholar 

  57. Wong KK et al. (2001) Identification of differentially expressed genes from ovarian cancer cells by MICROMAX cDNA microarray system. Biotechniques 30: 670–675

    Article  CAS  PubMed  Google Scholar 

  58. Schummer M et al. (1999) Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene 238: 375–385

    Article  CAS  PubMed  Google Scholar 

  59. Kim JH et al. (2003) Identification of epithelial cell adhesion molecule autoantibody in patients with ovarian cancer. Clin Cancer Res 9: 4782–4791

    CAS  PubMed  Google Scholar 

  60. Huddleston HG et al. (2005) Clinical applications of microarray technology: creatine kinase B is an up-regulated gene in epithelial ovarian cancer and shows promise as a serum marker. Gynecol Oncol 96: 77–83

    Article  CAS  PubMed  Google Scholar 

  61. Shvartsman HS et al. (2003) Overexpression of kallikrein 10 in epithelial ovarian carcinomas. Gynecol Oncol 90: 44–50

    Article  CAS  PubMed  Google Scholar 

  62. Zorn KK et al. (2003) Choice of normal ovarian control influences determination of differentially expressed genes in ovarian cancer expression profiling studies. Clin Cancer Res 9: 4811–4818

    CAS  PubMed  Google Scholar 

  63. Schwartz DR et al. (2002) Gene expression in ovarian cancer reflects both morphology and biological behavior, distinguishing clear cell from other poor-prognosis ovarian carcinomas. Cancer Res 62: 4722–4729

    CAS  PubMed  Google Scholar 

  64. Zorn KK et al. (2005) Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin Cancer Res 11: 6422–6430

    Article  CAS  PubMed  Google Scholar 

  65. Motzer RJ and Bukowski RM (2006) Targeted therapy for metastatic renal cell carcinoma. J Clin Oncol 24: 5601–5608

    Article  CAS  PubMed  Google Scholar 

  66. Bonome T et al. (2005) Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res 65: 10602–10612

    Article  CAS  PubMed  Google Scholar 

  67. Meinhold-Heerlein I et al. (2005) Molecular and prognostic distinction between serous ovarian carcinomas of varying grade and malignant potential. Oncogene 24: 1053–1065

    Article  CAS  PubMed  Google Scholar 

  68. Singer G et al. (2002) Diverse tumorigenic pathways in ovarian serous carcinoma. Am J Pathol 160: 1223–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dupuy A and Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99: 147–157

    Article  PubMed  Google Scholar 

  70. Shi L et al. (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24: 1151–1161

    Article  CAS  PubMed  Google Scholar 

  71. Brazma A et al. (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29: 365–371

    Article  CAS  PubMed  Google Scholar 

  72. Paik S et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351: 2817–2826

    Article  CAS  PubMed  Google Scholar 

  73. Lamb J et al. (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313: 1929–1935

    Article  CAS  PubMed  Google Scholar 

  74. Funaoka K et al. (1997) Activation of the p21 (Waf1/Cip1) promoter by the ets oncogene family transcription factor E1AF. Biochem Biophys Res Commun 236: 79–82

    Article  CAS  PubMed  Google Scholar 

  75. Han JY et al. (2006) The prognostic significance of pretreatment plasma levels of insulin-like growth factor (IGF)-1, IGF-2, and IGF binding protein-3 in patients with advanced non-small cell lung cancer. Lung Cancer 54: 227–234

    Article  PubMed  Google Scholar 

  76. Taniguchi T et al. (2003) Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med 9: 568–574

    Article  CAS  PubMed  Google Scholar 

  77. Liu N et al. (1997) The human XRCC9 gene corrects chromosomal instability and mutagen sensitivities in CHO UV40 cells. Proc Natl Acad Sci USA 94: 9232–9237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li X et al. (2005) Antiproliferative effect of beta-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase. Cell Mol Life Sci 62: 894–904

    Article  CAS  PubMed  Google Scholar 

  79. Sun CL and Chao CC (2005) Cross-resistance to death ligand-induced apoptosis in cisplatin-selected HeLa cells associated with overexpression of DDB2 and subsequent induction of cFLIP. Mol Pharmacol 67: 1307–1314

    Article  CAS  PubMed  Google Scholar 

  80. Albertella MR et al. (2005) A role for polymerase eta in the cellular tolerance to cisplatin-induced damage. Cancer Res 65: 9799–9806

    Article  CAS  PubMed  Google Scholar 

  81. Kepp O et al. (2007) Bak and Bax are non-redundant during infection- and DNA damage-induced apoptosis. EMBO J 26: 825–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shi R et al. (2007) Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Mol Cancer Ther 6: 1338–1347

    Article  CAS  PubMed  Google Scholar 

  83. Aoyagi Y et al. (2005) A novel cinnamic acid derivative that inhibits Cdc25 dual-specificity phosphatase activity. Cancer Sci 96: 614–619

    Article  CAS  PubMed  Google Scholar 

  84. Vlachos P et al. (2007) The cell cycle inhibitor p57(Kip2) promotes cell death via the mitochondrial apoptotic pathway. Cell Death Differ 14: 1497–1507

    Article  CAS  PubMed  Google Scholar 

  85. Villedieu M et al. (2007) Anticancer and chemosensitizing effects of 2,3-DCPE in ovarian carcinoma cell lines: link with ERK activation and modulation of p21WAF1/CIP1, Bcl-2 and Bcl-xL expression. Gynecol Oncol 105: 373–384

    Article  CAS  PubMed  Google Scholar 

  86. Kerley-Hamilton JS et al. (2005) A p53-dominant transcriptional response to cisplatin in testicular germ cell tumor-derived human embryonal carcinoma. Oncogene 24: 6090–6100

    Article  CAS  PubMed  Google Scholar 

  87. Shen DW et al. (2006) Identification by functional cloning from a retroviral cDNA library of cDNAs for ribosomal protein L36 and the 10-kDa heat shock protein that confer cisplatin resistance. Mol Pharmacol 69: 1383–1388

    Article  CAS  PubMed  Google Scholar 

  88. Johansson K et al. (2007) Microsomal glutathione transferase 1 in anticancer drug resistance. Carcinogenesis 28: 465–470

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by LeAnn's Project, by the Bernice Shopkin Weisman Fund, and by the Ovarian Cancer Research Fund in memory of Amy Sachs Simon. This work was also supported by NIH Ovarian Cancer SPORE Grant CA105009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis A Konstantinopoulos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konstantinopoulos, P., Spentzos, D. & Cannistra, S. Gene-expression profiling in epithelial ovarian cancer. Nat Rev Clin Oncol 5, 577–587 (2008). https://doi.org/10.1038/ncponc1178

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncponc1178

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing