Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Trafficking and signaling by fatty-acylated and prenylated proteins

Abstract

A wide variety of signaling proteins are modified by covalently linked fatty acids and/or prenyl groups. These hydrophobic moieties, which include myristate, palmitate, farnesyl and geranylgeranyl, are more than just fat: they provide distinct information that modulates the specificity and efficiency of signal transduction. Recent studies show that lipid modification influences the movement of a signaling protein within the cell and its final destination. Protein lipidation can also confer reversible association with membranes and other signaling proteins. These findings provide new insights into the biochemical and biophysical mechanisms that regulate membrane targeting, trafficking and signaling by lipid-modified proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reversible membrane binding of lipid-modified proteins.
Figure 2: Reversible palmitoylation of H-Ras dictates localization and signaling.
Figure 3: Membrane targeting mechanisms for acylated proteins.

Similar content being viewed by others

References

  1. Resh, M.D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim. Biophys. Acta 1451, 1–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Resh, M.D. Membrane targeting of lipid modified signal transduction proteins. Subcell. Biochem. 37, 217–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Smotrys, J.E. & Linder, M.E. Palmitoylation of intracellular signaling proteins: regulation and function. Annu. Rev. Biochem. 73, 559–587 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Magee, T. & Seabra, M.C. Fatty acylation and prenylation of proteins: what's hot in fat. Curr. Opin. Cell Biol. 17, 190–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Farazi, T.A., Waksman, G. & Gordon, J.I. The biology and enzymology of protein N-myristoylation. J. Biol. Chem. 276, 39501–39504 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Maurer-Stroh, S., Eisenhaber, B. & Eisenhaber, F. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence. J. Mol. Biol. 317, 541–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, S.H. et al. N-myristoyltransferase 1 is essential in early mouse development. J. Biol. Chem. 280, 18990–18995 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Ducker, C.E., Upson, J.J., French, K.J. & Smith, C.D. Two N-myristoyltransferase isozymes play unique roles in protein myristoylation, proliferation, and apoptosis. Mol. Cancer Res. 3, 463–476 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang, X., Lu, Y., Neubert, T.A. & Resh, M.D. Mass spectrometric analysis of GAP-43/neuromodulin reveals the presence of a variety of fatty acylated species. J. Biol. Chem. 277, 33032–33040 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Liang, X., Lu, Y., Wilkes, M., Neubert, T.A. & Resh, M.D. The N-terminal SH4 region of the Src family kinase Fyn is modified by methylation and heterogeneous fatty acylation: role in membrane targeting, cell adhesion, and spreading. J. Biol. Chem. 279, 8133–8139 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, F., Xue, Y., Yao, X. & Xu, Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics 22, 894–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Mitchell, D.A., Vasudevan, A., Linder, M.E. & Deschenes, R.J. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J. Lipid Res. 47, 1118–1127 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Roth, A.F. et al. Global analysis of protein palmitoylation in yeast. Cell 125, 1003–1013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kleuss, C. & Krause, E. Galpha(s) is palmitoylated at the N-terminal glycine. EMBO J. 22, 826–832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pepinsky, R.B. et al. Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Miura, G.I. et al. Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by restricting its diffusion. Dev. Cell 10, 167–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Sebti, S.M. Protein farnesylation: implications for normal physiology, malignant transformation, and cancer therapy. Cancer Cell 7, 297–300 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Peitzsch, R.M. & McLaughlin, S. Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 32, 10436–10443 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Silvius, J.R. & l'Heureux, F. Fluorimetric evaluation of the affinities of isoprenylated peptides for lipid bilayers. Biochemistry 33, 3014–3022 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Sigal, C.T., Zhou, W., Buser, C.A., McLaughlin, S. & Resh, M.D. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc. Natl. Acad. Sci. USA 91, 12253–12257 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buser, C.A., Sigal, C.T., Resh, M.D. & McLaughlin, S. Membrane binding of myristylated peptides corresponding to the NH2 terminus of Src. Biochemistry 33, 13093–13101 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Resh, M.D. Myristylation and palmitylation of Src family members: the fats of the matter. Cell 76, 411–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Murray, D. et al. Electrostatics and the membrane association of Src: theory and experiment. Biochemistry 37, 2145–2159 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Murray, D., Ben-Tal, N., Honig, B. & McLaughlin, S. Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure 5, 985–989 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Murray, P.S. et al. Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle. Structure 13, 1521–1531 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Hancock, J.F., Magee, A.I., Childs, J.E. & Marshall, C.J. All ras proteins are polyisoprenylated but only some are palmitoylated. Cell 57, 1167–1177 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Hancock, J.F., Paterson, H. & Marshall, C.J. A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell 63, 133–139 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Hofemeister, H., Weber, K. & Stick, R. Association of prenylated proteins with the plasma membrane and the inner nuclear membrane is mediated by the same membrane-targeting motifs. Mol. Biol. Cell 11, 3233–3246 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schroeder, H. et al. S-Acylation and plasma membrane targeting of the farnesylated carboxyl-terminal peptide of N-Ras in mammalian fibroblasts. Biochemistry 36, 13102–13109 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Huster, D. et al. Membrane insertion of a lipidated ras peptide studied by FTIR, solid-state NMR, and neutron diffraction spectroscopy. J. Am. Chem. Soc. 125, 4070–4079 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Silvius, J.R., Bhagatji, P., Leventis, R. & Terrone, D. K-ras4B and prenylated proteins lacking “second signals” associate dynamically with cellular membranes. Mol. Biol. Cell 17, 192–202 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ames, J.B., Tanaka, T., Stryer, L. & Ikura, M. Portrait of a myristoyl switch protein. Curr. Opin. Struct. Biol. 6, 432–438 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Goldberg, J. Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Hantschel, O. et al. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112, 845–857 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Matsubara, M., Nakatsu, T., Kato, H. & Taniguchi, H. Crystal structure of a myristoylated CAP-23/NAP-22 N-terminal domain complexed with Ca2+/calmodulin. EMBO J. 23, 712–718 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McLaughlin, S. & Aderem, A. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 20, 272–276 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Hoffman, G.R., Nassar, N. & Cerione, R.A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. An, Y. et al. Geranylgeranyl switching regulates GDI-Rab GTPase recycling. Structure 11, 347–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Rak, A. et al. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science 302, 646–650 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Fivaz, M. & Meyer, T. Reversible intracellular translocation of KRas but not HRas in hippocampal neurons regulated by Ca2+/calmodulin. J. Cell Biol. 170, 429–441 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bivona, T.G. et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol. Cell 21, 481–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Goodwin, J.S. et al. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol. 170, 261–272 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rocks, O. et al. An acylation cycle regulates localization and activity of palmitoylated Ras isoforms. Science 307, 1746–1752 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Bivona, T.G. et al. Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424, 694–698 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Chiu, V.K. et al. Ras signalling on the endoplasmic reticulum and the Golgi. Nat. Cell Biol. 4, 343–350 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. El-Husseini Ael, D. et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell 108, 849–863 (2002).

    Article  Google Scholar 

  48. el-Husseini Ael, D. & Bredt, D.S. Protein palmitoylation: a regulator of neuronal development and function. Nat. Rev. Neurosci. 3, 791–802 (2002).

    Article  CAS  Google Scholar 

  49. Qanbar, R. & Bouvier, M. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol. Ther. 97, 1–33 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, C.A. & Manning, D.R. Regulation of G proteins by covalent modification. Oncogene 20, 1643–1652 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Jones, T.L., Degtyarev, M.Y. & Backlund, P.S., Jr . The stoichiometry of G alpha(s) palmitoylation in its basal and activated states. Biochemistry 36, 7185–7191 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Wedegaertner, P.B., Bourne, H.R. & von Zastrow, M. Activation-induced subcellular redistribution of Gs alpha. Mol. Biol. Cell 7, 1225–1233 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, C., Duncan, J.A., Gilman, A.G. & Mumby, S.M. Persistent membrane association of activated and depalmitoylated G protein alpha subunits. Proc. Natl. Acad. Sci. USA 96, 412–417 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Drenan, R.M. et al. Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. J. Cell Biol. 169, 623–633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schroeder, H., Leventis, R., Shahinian, S., Walton, P.A. & Silvius, J.R. Lipid-modified, cysteinyl-containing peptides of diverse structures are efficiently S-acylated at the plasma membrane of mammalian cells. J. Cell Biol. 134, 647–660 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Dong, X. et al. Palmitoylation and plasma membrane localization of Ras2p by a nonclassical trafficking pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 6574–6584 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. van't Hof, W. & Resh, M.D. Rapid plasma membrane anchoring of newly synthesized p59fyn: selective requirement for NH2-terminal myristoylation and palmitoylation at cysteine-3. J. Cell Biol. 136, 1023–1035 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Liang, X. et al. Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. J. Biol. Chem. 276, 30987–30994 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Webb, Y., Hermida-Matsumoto, L. & Resh, M.D. Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 275, 261–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Colombo, S. et al. N-myristoylation determines dual targeting of mammalian NADH-cytochrome b5 reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning. J. Cell Biol. 168, 735–745 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lam, K. et al. Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J. Cell Biol. 174, 19–25 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yanai, A. et al. Palmitoylation of huntingtin by HIP14is essential for its trafficking and function. Nat. Neurosci. 9, 824–831 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bijlmakers, M.J. & Marsh, M. Trafficking of an acylated cytosolic protein: newly synthesized p56(lck) travels to the plasma membrane via the exocytic pathway. J. Cell Biol. 145, 457–468 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kasahara, K. et al. Trafficking of Lyn through the Golgi caveolin involves the charged residues on alphaE and alphaI helices in the kinase domain. J. Cell Biol. 165, 641–652 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Navarro-Lerida, I., Alvarez-Barrientos, A. & Rodriguez-Crespo, I. N-terminal palmitoylation within the appropriate amino acid environment conveys on NOS2 the ability to progress along the intracellular sorting pathways. J. Cell Sci. 119, 1558–1569 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Apolloni, A., Prior, I.A., Lindsay, M., Parton, R.G. & Hancock, J.F. H-Ras but not K-Ras traffics to the plasma membrane through the exocytic pathway. Mol. Cell. Biol. 20, 2475–2487 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Choy, E. et al. Endomembrane trafficking of Ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Prior, I.A. et al. GTP-dependent segregation of H-Ras from lipid rafts is required for biological activity. Nat. Cell Biol. 3, 368–375 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Prior, I.A., Muncke, C., Parton, R.G. & Hancock, J.F. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rotblat, B. et al. Three separable domains regulate GTP-dependent association of H-Ras with the plasma membrane. Mol. Cell. Biol. 24, 6799–6810 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gomes, A.Q. et al. Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol. Biol. Cell 14, 1882–1899 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wherlock, M., Gampel, A., Futter, C. & Mellor, H. Farnesyltransferase inhibitors disrupt EGF receptor traffic through modulation of the RhoB GTPase. J. Cell Sci. 117, 3221–3231 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Petaja-Repo, U.E. et al. Distinct Subcellular Localization for Constitutive and Agonist-modulated Palmitoylation of the Human {delta} Opioid Receptor. J. Biol. Chem. 281, 15780–15789 (2006).

    Article  PubMed  CAS  Google Scholar 

  75. Percherancier, Y. et al. Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor. J. Biol. Chem. 276, 31936–31944 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Fukushima, Y. et al. Palmitoylation of the canine histamine H2 receptor occurs at Cys(305) and is important for cell surface targeting. Biochim. Biophys. Acta 1539, 181–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Blanpain, C. et al. Palmitoylation of CCR5 is critical for receptor trafficking and efficient activation of intracellular signaling pathways. J. Biol. Chem. 276, 23795–23804 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Abrami, L., Leppla, S.H. & van der Goot, F.G. Receptor palmitoylation and ubiquitination regulate anthrax toxin endocytosis. J. Cell Biol. 172, 309–320 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kinlough, C.L. et al. Recycling of MUC1 is dependent on its palmitoylation. J. Biol. Chem. 281, 12112–12122 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Yik, J.H., Saxena, A., Weigel, J.A. & Weigel, P.H. Nonpalmitoylated human asialoglycoprotein receptors recycle constitutively but are defective in coated pit-mediated endocytosis, dissociation, and delivery of ligand to lysosomes. J. Biol. Chem. 277, 40844–40852 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Mishkind, M. Morbid myristoylation. Trends Cell Biol. 11, 191 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Zha, J., Weiler, S., Oh, K.J., Wei, M.C. & Korsmeyer, S.J. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290, 1761–1765 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Utsumi, T., Sakurai, N., Nakano, K. & Ishisaka, R. C-terminal 15 kDa fragment of cytoskeletal actin is posttranslationally N-myristoylated upon caspase-mediated cleavage and targeted to mitochondria. FEBS Lett. 539, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Sakurai, N. & Utsumi, T. Posttranslational N-myristoylation is required for the anti-apoptotic activity of human tGelsolin, the C-terminal caspase cleavage product of human gelsolin. J. Biol. Chem. 281, 14288–14295 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Vilas, G.L. et al. Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc. Natl. Acad. Sci. USA 103, 6542–6547 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hundt, M. et al. Impaired activation and localization of LAT in anergic T cells as a consequence of a selective palmitoylation defect. Immunity 24, 513–522 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Miura, G.I. & Treisman, J.E. Lipid modification of secreted signaling proteins. Cell Cycle 5, 1184–1188 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Zhai, L., Chaturvedi, D. & Cumberledge, S. Drosophila wnt-1 undergoes a hydrophobic modification and is targeted to lipid rafts, a process that requires porcupine. J. Biol. Chem. 279, 33220–33227 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Mann, R.K. & Beachy, P.A. Novel lipid modifications of secreted protein signals. Annu. Rev. Biochem. 73, 891–923 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Gallet, A., Ruel, L., Staccini-Lavenant, L. & Therond, P.P. Cholesterol modification is necessary for controlled planar long-range activity of Hedgehog in Drosophila epithelia. Development 133, 407–418 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Lee, J.D. et al. An acylatable residue of Hedgehog is differentially required in Drosophila and mouse limb development. Dev. Biol. 233, 122–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Panakova, D., Sprong, H., Marois, E., Thiele, C. & Eaton, S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 435, 58–65 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Osterhout, J.L. et al. Palmitoylation regulates regulator of G-protein signaling (RGS) 16 function. II. Palmitoylation of a cysteine residue in the RGS box is critical for RGS16 GTPase accelerating activity and regulation of Gi-coupled signalling. J. Biol. Chem. 278, 19309–19316 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Xue, L., Gollapalli, D.R., Maiti, P., Jahng, W.J. & Rando, R.R. A palmitoylation switch mechanism in the regulation of the visual cycle. Cell 117, 761–771 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Subramanian, K. et al. Palmitoylation determines the function of Vac8 at the yeast vacuole. J. Cell Sci. 119, 2477–2485 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the author's laboratory was supported by grants GM57966 and CA72309 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resh, M. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2, 584–590 (2006). https://doi.org/10.1038/nchembio834

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing