Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering novel binding proteins from nonimmunoglobulin domains

Abstract

Not all adaptive immune systems use the immunoglobulin fold as the basis for specific recognition molecules: sea lampreys, for example, have evolved an adaptive immune system that is based on leucine-rich repeat proteins. Additionally, many other proteins, not necessarily involved in adaptive immunity, mediate specific high-affinity interactions. Such alternatives to immunoglobulins represent attractive starting points for the design of novel binding molecules for research and clinical applications. Indeed, through progress and increased experience in library design and selection technologies, gained not least from working with synthetic antibody libraries, researchers have now exploited many of these novel scaffolds as tailor-made affinity reagents. Significant progress has been made not only in the basic science of generating specific binding molecules, but also in applications of the selected binders in laboratory procedures, proteomics, diagnostics and therapy. Challenges ahead include identifying applications where these novel proteins can not only be an alternative, but can enable approaches so far deemed technically impossible, and delineate those therapeutic applications commensurate with the molecular properties of the respective proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding-site engineering strategies used with different alternative scaffolds.
Figure 2: Structures of affinity-selected binding molecules interacting with their protein or small molecule targets.
Figure 3: The generation of diversity in nature and in the test tube.

Similar content being viewed by others

References

  1. Holliger, P. & Hudson, P.J. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23, 1126–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Moroney, S.E. & Plückthun, A. in Modern Biopharmaceuticals, vol. 3. (ed. Knäblein, J.) 1147–1186 (Wiley-VCH, Weinheim, Germany, 2005).

    Book  Google Scholar 

  3. Wörn, A. & Plückthun, A. Stability engineering of antibody single-chain Fv fragments. J. Mol. Biol. 305, 989–1010 (2001).

    Article  PubMed  CAS  Google Scholar 

  4. de Graaf, M., van der Meulen-Muileman, I.H., Pinedo, H.M. & Haisma, H.J. Expression of scFvs and scFv fusion proteins in eukaryotic cells. Methods Mol. Biol. 178, 379–387 (2002).

    CAS  PubMed  Google Scholar 

  5. Wikman, M. et al. Selection and characterization of HER2/neu-binding affibody ligands. Protein Eng. Des. Sel. 17, 455–462 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Sandström, K., Xu, Z., Forsberg, G. & Nygren, P.-Å. Inhibition of the CD28–CD80 co-stimulation signal by a CD28-binding affibody ligand developed by combinatorial protein engineering. Protein Eng. 16, 691–697 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Schlehuber, S. & Skerra, A. Lipocalins in drug discovery: from natural ligand-binding proteins to “anticalins”. Drug Discov. Today 10, 23–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Xu, L. et al. Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol. 9, 933–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Rönnmark, J. et al. Construction and characterization of affibody-Fc chimeras produced in Escherichia coli. J. Immunol. Methods 261, 199–211 (2002).

    Article  PubMed  Google Scholar 

  10. Jefferis, R., Lund, J. & Pound, J.D. IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol. Rev. 163, 59–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Davis, C.B. & Gillies, S.D. Immunocytokines: amplification of anti-cancer immunity. Cancer Immunol. Immunother. 52, 297–308 (2003).

    CAS  PubMed  Google Scholar 

  12. Helguera, G., Morrison, S.L. & Penichet, M.L. Antibody-cytokine fusion proteins: harnessing the combined power of cytokines and antibodies for cancer therapy. Clin. Immunol. 105, 233–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Pastan, I. Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol. Immunother. 52, 338–341 (2003).

    PubMed  Google Scholar 

  14. Smith, A.B., III, Savinov, S.N., Manjappara, U.V. & Chaiken, I.M. Peptide-small molecule hybrids via orthogonal deprotection-chemoselective conjugation to cysteine-anchored scaffolds. A model study. Org. Lett. 4, 4041–4044 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Telleman, P. & Junghans, R.P. The role of the Brambell receptor (FcRB) in liver: protection of endocytosed immunoglobulin G (IgG) from catabolism in hepatocytes rather than transport of IgG to bile. Immunology 100, 245–251 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gunneriusson, E., Nord, K., Uhlén, M. & Nygren, P.-Å. Affinity maturation of a Taq DNA polymerase specific affibody by helix shuffling. Protein Eng. 12, 873–878 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Willuda, J. et al. Tumor targeting of mono-, di-, and tetravalent anti-p185(HER-2) miniantibodies multimerized by self-associating peptides. J. Biol. Chem. 276, 14385–14392 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Graff, C.P. & Wittrup, K.D. Theoretical analysis of antibody targeting of tumor spheroids: importance of dosage for penetration, and affinity for retention. Cancer Res. 63, 1288–1296 (2003).

    CAS  PubMed  Google Scholar 

  19. Williams, A. & Baird, L.G. DX-88 and HAE: a developmental perspective. Transfus. Apheresis Sci. 29, 255–258 (2003).

    Article  Google Scholar 

  20. Chapman, A.P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Flower, D.R. Towards in silico prediction of immunogenic epitopes. Trends Immunol. 24, 667–674 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Schirle, M., Weinschenk, T. & Stevanovic, S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T-cell epitopes from defined antigens. J. Immunol. Methods 257, 1–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Koren, E., Zuckerman, L.A. & Mire-Sluis, A.R. Immune responses to therapeutic proteins in humans—clinical significance, assessment and prediction. Curr. Pharm. Biotechnol. 3, 349–360 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Borrebaeck, C.A. Antibodies in diagnostics—from immunoassays to protein chips. Immunol. Today 21, 379–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Rönnmark, J. et al. Affibody-β-galactosidase immunoconjugates produced as soluble fusion proteins in the Escherichia coli cytosol. J. Immunol. Methods 281, 149–160 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. Legendre, D. et al. TEM-1 β-lactamase as a scaffold for protein recognition and assay. Protein Sci. 11, 1506–1518 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karlström, A. & Nygren, P.-Å. Dual labeling of a binding protein allows for specific fluorescence detection of native protein. Anal. Biochem. 295, 22–30 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. Abedi, M.R., Caponigro, G. & Kamb, A. Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res. 26, 623–630 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Renard, M. et al. Knowledge-based design of reagentless fluorescent biosensors from recombinant antibodies. J. Mol. Biol. 318, 429–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Andersson, M., Rönnmark, J., Areström, I., Nygren, P.-Å. & Ahlborg, N. Inclusion of a non-immunoglobulin binding protein in two-site ELISA for quantification of human serum proteins without interference by heterophilic serum antibodies. J. Immunol. Methods 283, 225–234 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Henning, P. et al. Tumor cell targeted gene delivery by adenovirus 5 vectors carrying knobless fibers with antibody-binding domains. Gene Ther. 12, 211–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Mrsny, R.J. Strategies for targeting protein therapeutics to selected tissues and cells. Expert Opin. Biol. Ther. 4, 65–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Couzin, J. RNAi shows cracks in its armors. Science 306, 1124–1125 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Biocca, S., Ruberti, F., Tafani, M., Pierandrei-Amaldi, P. & Cattaneo, A. Redox state of single chain Fv fragments targeted to the endoplasmic reticulum, cytosol and mitochondria. Bio/Technology 13, 1110–1115 (1995).

    Article  CAS  Google Scholar 

  35. Ewert, S., Honegger, A. & Plückthun, A. Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34, 184–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Koide, A., Abbatiello, S., Rothgery, L. & Koide, S. Probing protein conformational changes in living cells by using designer binding proteins: application to the estrogen receptor. Proc. Natl. Acad. Sci. USA 99, 1253–1258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amstutz, P. et al. Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J. Biol. Chem. 280, 24715–24722 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376, 660–669 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Dutzler, R., Campbell, E.B. & MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 300, 108–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Högbom, M., Eklund, M., Nygren, P.-Å. & Nordlund, P. Structural basis for recognition by an in vitro evolved affibody. Proc. Natl. Acad. Sci. USA 100, 3191–3196 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  41. Binz, H.K. et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat. Biotechnol. 22, 575–582 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Kohl, A. et al. Allosteric inhibition of a kinase by a designed ankyrin repeat protein inhibitor. Structure 13, 1131–1141 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Cuatrecasas, P. Affinity chromatography of macromolecules. Adv. Enzymol. 36, 29–89 (1972).

    CAS  PubMed  Google Scholar 

  44. Linhult, M. et al. Improving the tolerance of a protein a analogue to repeated alkaline exposures using a bypass mutagenesis approach. Proteins 55, 407–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Nord, K., Gunneriusson, E., Uhlén, M. & Nygren, P.-Å. Ligands selected from combinatorial libraries of protein A for use in affinity capture of apolipoprotein A-1M and Taq DNA polymerase. J. Biotechnol. 80, 45–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Reina, J. et al. Computer-aided design of a PDZ domain to recognize new target sequences. Nat. Struct. Biol. 9, 621–627 (2002).

    CAS  PubMed  Google Scholar 

  47. Blank, K., Lindner, P., Diefenbach, B. & Plückthun, A. Self-immobilizing recombinant antibody fragments for immunoaffinity chromatography: generic, parallel, and scalable protein purification. Protein Expr. Purif. 24, 313–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Koide, A., Bailey, C.W., Huang, X. & Koide, S. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284, 1141–1151 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Nord, K., Nilsson, J., Nilsson, B., Uhlén, M. & Nygren, P.-Å. A combinatorial library of an α-helical bacterial receptor domain. Protein Eng. 8, 601–608 (1995).

    Article  CAS  PubMed  Google Scholar 

  51. Nord, K. et al. Recombinant human factor VIII-specific affinity ligands selected from phage-displayed combinatorial libraries of protein A. Eur. J. Biochem. 268, 4269–4277 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Eklund, M., Axelsson, L., Uhlén, M. & Nygren, P.-Å. Anti-idiotypic protein domains selected from protein A-based affibody libraries. Proteins 48, 454–462 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Eklund, M., Sandström, K., Teeri, T.T. & Nygren, P.-Å. Site-specific and reversible anchoring of active proteins onto cellulose using a cellulosome-like complex. J. Biotechnol. 109, 277–286 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Rönnmark, J., Grönlund, H., Uhlén, M. & Nygren, P.-Å. Human immunoglobulin A (IgA)-specific ligands from combinatorial engineering of protein A. Eur. J. Biochem. 269, 2647–2655 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. Hansson, M. et al. An in vitro selected binding protein (affibody) shows conformation-dependent recognition of the respiratory syncytial virus (RSV) G protein. Immunotechnology 4, 237–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Nord, K. et al. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15, 772–777 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Skerra, A. Lipocalins as a scaffold. Biochim. Biophys. Acta 1482, 337–350 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Beste, G., Schmidt, F.S., Stibora, T. & Skerra, A. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl. Acad. Sci. USA 96, 1898–1903 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mercader, J.V. & Skerra, A. Generation of anticalins with specificity for a nonsymmetric phthalic acid ester. Anal. Biochem. 308, 269–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Schlehuber, S., Beste, G. & Skerra, A. A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J. Mol. Biol. 297, 1105–1120 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Vogt, M. & Skerra, A. Construction of an artificial receptor protein (“anticalin”) based on the human apolipoprotein D. ChemBioChem 5, 191–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Forrer, P., Stumpp, M.T., Binz, H.K. & Plückthun, A. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett. 539, 2–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Binz, H.K., Stumpp, M.T., Forrer, P., Amstutz, P. & Plückthun, A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J. Mol. Biol. 332, 489–503 (2003).

    Article  CAS  PubMed  Google Scholar 

  64. Kohl, A. et al. Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc. Natl. Acad. Sci. USA 100, 1700–1705 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ellis, J., Dodds, P. & Pryor, T. Structure, function and evolution of plant disease resistance genes. Curr. Opin. Plant Biol. 3, 278–284 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Choe, J., Kelker, M.S. & Wilson, I.A. Crystal structure of human Toll-like receptor 3 (TLR3) ectodomain. Science, 309, 581–585 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430, 174–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Malabarba, M.G. et al. A repertoire library that allows the selection of synthetic SH2s with altered binding specificities. Oncogene 20, 5186–5194 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Panni, S., Dente, L. & Cesareni, G. In vitro evolution of recognition specificity mediated by SH3 domains reveals target recognition rules. J. Biol. Chem. 277, 21666–21674 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Hiipakka, M. & Saksela, K. Capacity of simian immunodeficiency virus strain mac Nef for high-affinity Src homology 3 (SH3) binding revealed by ligand-tailored SH3 domains. J. Gen. Virol. 83, 3147–3152 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Schneider, S. et al. Mutagenesis and selection of PDZ domains that bind new protein targets. Nat. Biotechnol. 17, 170–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Junqueira, D., Cilenti, L., Musumeci, L., Sedivy, J.M. & Zervos, A.S. Random mutagenesis of PDZOmi domain and selection of mutants that specifically bind the Myc proto-oncogene and induce apoptosis. Oncogene 22, 2772–2781 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Ferrer, M. et al. Directed evolution of PDZ variants to generate high-affinity detection reagents. Protein Eng. Des. Sel. 18, 165–173 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Cortajarena, A.L., Kajander, T., Pan, W., Cocco, M.J. & Regan, L. Protein design to understand peptide ligand recognition by tetratricopeptide repeat proteins. Protein Eng. Des. Sel. 17, 399–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Vita, C., Roumestand, C., Toma, F. & Ménez, A. Scorpion toxins as natural scaffolds for protein engineering. Proc. Natl. Acad. Sci. USA 92, 6404–6408 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martin, L. et al. Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat. Biotechnol. 21, 71–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Souriau, C., Chiche, L., Irving, R. & Hudson, P. New binding specificities derived from Min-23, a small cystine-stabilized peptidic scaffold. Biochemistry 44, 7143–7155 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Huang, C.C. et al. Scorpion-toxin mimics of CD4 in complex with human immunodeficiency virus gp120 crystal structures, molecular mimicry, and neutralization breadth. Structure (Camb) 13, 755–768 (2005).

    Article  CAS  Google Scholar 

  80. Skerra, A. Engineered protein scaffolds for molecular recognition. J. Mol. Recognit. 13, 167–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Stoop, A.A. & Craik, C.S. Engineering of a macromolecular scaffold to develop specific protease inhibitors. Nat. Biotechnol. 21, 1063–1068 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Nilsson, B. et al. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng. 1, 107–113 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Roberts, B.L. et al. Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc. Natl. Acad. Sci. USA 89, 2429–2433 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Matsuura, T. et al. Evolutionary molecular engineering by random elongation mutagenesis. Nat. Biotechnol. 17, 58–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  85. Holler, P.D. et al. In vitro evolution of a T cell receptor with high affinity for peptide/MHC. Proc. Natl. Acad. Sci. USA 97, 5387–5392 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shusta, E.V., Holler, P.D., Kieke, M.C., Kranz, D.M. & Wittrup, K.D. Directed evolution of a stable scaffold for T-cell receptor engineering. Nat. Biotechnol. 18, 754–759 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Starwalt, S.E., Masteller, E.L., Bluestone, J.A. & Kranz, D.M. Directed evolution of a single-chain class II MHC product by yeast display. Protein Eng. 16, 147–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Li, Y. et al. Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat. Biotechnol. 23, 349–354 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Knappik, A. et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296, 57–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Mosavi, L.K., Minor, D.L., Jr. & Peng, Z.-Y. Consensus-derived structural determinants of the ankyrin repeat motif. Proc. Natl. Acad. Sci. USA 99, 16029–16034 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stumpp, M.T., Forrer, P., Binz, H.K. & Plückthun, A. Designing repeat proteins: modular leucine-rich repeat protein libraries based on the mammalian ribonuclease inhibitor family. J. Mol. Biol. 332, 471–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Main, E.R., Xiong, Y., Cocco, M.J., D'Andrea, L. & Regan, L. Design of stable α-helical arrays from an idealized TPR motif. Structure (Camb) 11, 497–508 (2003).

    Article  CAS  Google Scholar 

  93. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  94. Virnekäs, B. et al. Trinucleotide phosphoramidites: ideal reagents for the synthesis of mixed oligonucleotides for random mutagenesis. Nucleic Acids Res. 22, 5600–5607 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Korndörfer, I.P., Beste, G. & Skerra, A. Crystallographic analysis of an “anticalin” with tailored specificity for fluorescein reveals high structural plasticity of the lipocalin loop region. Proteins 53, 121–129 (2003).

    Article  PubMed  CAS  Google Scholar 

  96. Korndörfer, I.P., Schlehuber, S. & Skerra, A. Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. J. Mol. Biol. 330, 385–396 (2003).

    Article  PubMed  CAS  Google Scholar 

  97. Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317 (1985).

    Article  CAS  PubMed  Google Scholar 

  98. Kieke, M.C. et al. Selection of functional T cell receptor mutants from a yeast surface-display library. Proc. Natl. Acad. Sci. USA 96, 5651–5656 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lu, Z. et al. Expression of thioredoxin random peptide libraries on the Escherichia coli cell surface as functional fusions to flagellin: a system designed for exploring protein-protein interactions. Bio/Technology 13, 366–372 (1995).

    CAS  Google Scholar 

  100. Hanes, J. & Plückthun, A. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mattheakis, L.C., Bhatt, R.R. & Dower, W.J. An in vitro polysome display system for identifying ligands from very large peptide libraries. Proc. Natl. Acad. Sci. USA 91, 9022–9026 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Amstutz, P., Forrer, P., Zahnd, C. & Plückthun, A. In vitro display technologies: novel developments and applications. Curr. Opin. Biotechnol. 12, 400–405 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Roberts, R.W. & Szostak, J.W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proc. Natl. Acad. Sci. USA 94, 12297–12302 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lipovsek, D. & Plückthun, A. In-vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods 290, 51–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Baggio, R. et al. Identification of epitope-like consensus motifs using mRNA display. J. Mol. Recognit. 15, 126–134 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Wentzel, A., Christmann, A., Adams, T. & Kolmar, H. Display of passenger proteins on the surface of Escherichia coli K-12 by the enterohemorrhagic E. coli intimin EaeA. J. Bacteriol. 183, 7273–7284 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Georgiou, G. et al. Display of β-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp'-OmpA'-β-lactamase fusions. Protein Eng. 9, 239–247 (1996).

    Article  CAS  PubMed  Google Scholar 

  108. Samuelson, P., Gunneriusson, E., Nygren, P.-Å. & Ståhl, S. Display of proteins on bacteria. J. Biotechnol. 96, 129–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Bessette, P.H., Rice, J.J. & Daugherty, P.S. Rapid isolation of high-affinity protein binding peptides using bacterial display. Protein Eng. Des. Sel. 17, 731–739 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Bertschinger, J. & Neri, D. Covalent DNA display as a novel tool for directed evolution of proteins in vitro. Protein Eng. Des. Sel. 17, 699–707 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Odegrip, R. et al. CIS display: In vitro selection of peptides from libraries of protein-DNA complexes. Proc. Natl. Acad. Sci. USA 101, 2806–2810 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Reiersen, H. et al. Covalent antibody display–an in vitro antibody-DNA library selection system. Nucleic Acids Res. 33, e10 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Pelletier, J.N., Arndt, K.M., Plükthun, A. & Michnick, S.W. An in vivo library-versus-library selection of optimized protein-protein interactions. Nat. Biotechnol. 17, 683–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Ghosh, I., Hamilton, A.D. & Regan, L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J. Am. Chem. Soc. 122, 5658–5659 (2000).

    Article  CAS  Google Scholar 

  115. Galarneau, A., Primeau, M., Trudeau, L.E. & Michnick, S.W. β-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat. Biotechnol. 20, 619–622 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Johnsson, N. & Varshavsky, A. Split ubiquitin as a sensor of protein interactions in vivo. Proc. Natl. Acad. Sci. USA 91, 10340–10344 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. USA 95, 5752–5756 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rossi, F., Charlton, C.A. & Blau, H.M. Monitoring protein-protein interactions in intact eukaryotic cells by β-galactosidase complementation. Proc. Natl. Acad. Sci. USA 94, 8405–8410 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Norman, T.C. et al. Genetic selection of peptide inhibitors of biological pathways. Science 285, 591–595 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Griffiths, A.D. et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Aujame, L., Geoffroy, F. & Sodoyer, R. High affinity human antibodies by phage display. Hum. Antibodies 8, 155–168 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Vaughan, T.J. et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Visintin, M., Meli, G.A., Cannistraci, I. & Cattaneo, A. Intracellular antibodies for proteomics. J. Immunol. Methods 290, 135–153 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bianchi, E. et al. A conformationally homogeneous combinatorial peptide library. J. Mol. Biol. 247, 154–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Szardenings, M., Vasel, B., Hecht, H.J., Collins, J. & Schomburg, D. Highly effective protease inhibitors from variants of human pancreatic secretory trypsin inhibitor (hPSTI): an assessment of 3-D structure-based protein design. Protein Eng. 8, 45–52 (1995).

    Article  CAS  PubMed  Google Scholar 

  126. Nuttall, S.D. et al. Design and expression of soluble CTLA-4 variable domain as a scaffold for the display of functional polypeptides. Proteins 36, 217–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Hufton, S.E. et al. Development and application of cytotoxic T lymphocyte-associated antigen 4 as a protein scaffold for the generation of novel binding ligands. FEBS Lett. 475, 225–231 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Böttger, A. et al. Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo. Curr. Biol. 7, 860–869 (1997).

    Article  PubMed  Google Scholar 

  129. Klevenz, B., Butz, K. & Hoppe-Seyler, F. Peptide aptamers: exchange of the thioredoxin-A scaffold by alternative platform proteins and its influence on target protein binding. Cell. Mol. Life Sci. 59, 1993–1998 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Benson, D.E., Conrad, D.W., de Lorimier, R.M., Trammell, S.A. & Hellinga, H.W. Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins. Science 293, 1641–1644 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Looger, L.L., Dwyer, M.A., Smith, J.J. & Hellinga, H.W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Marvin, J.S. & Hellinga, H.W. Conversion of a maltose receptor into a zinc biosensor by computational design. Proc. Natl. Acad. Sci. USA 98, 4955–4960 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. McConnell, S.J. & Hoess, R.H. Tendamistat as a scaffold for conformationally constrained phage peptide libraries. J. Mol. Biol. 250, 460–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  134. Heyd, B. et al. In vitro evolution of the binding specificity of neocarzinostatin, an enediyne-binding chromoprotein. Biochemistry 42, 5674–5683 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Nicaise, M., Valerio-Lepiniec, M., Minard, P. & Desmadril, M. Affinity transfer by CDR grafting on a nonimmunoglobulin scaffold. Protein Sci. 13, 1882–1891 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cicortas Gunnarsson, L. et al. A carbohydrate binding module as a diversity-carrying scaffold. Protein Eng. Des. Sel. 17, 213–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Bernath, K., Magdassi, S. & Tawfik, D.S. Directed evolution of protein inhibitors of DNA-nucleases by in vitro compartmentalization (IVC) and nano-droplet delivery. J. Mol. Biol. 345, 1015–1026 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Petrenko, V.A., Smith, G.P., Mazooji, M.M. & Quinn, T. α-helically constrained phage display library. Protein Eng. 15, 943–950 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Cobos, E.S. et al. A miniprotein scaffold used to assemble the polyproline II binding epitope recognized by SH3 domains. J. Mol. Biol. 342, 355–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Rutledge, S.E., Volkman, H.M. & Schepartz, A. Molecular recognition of protein surfaces: high affinity ligands for the CBP KIX domain. J. Am. Chem. Soc. 125, 14336–14347 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sia, S.K. & Kim, P.S. Protein grafting of an HIV-1-inhibiting epitope. Proc. Natl. Acad. Sci. USA 100, 9756–9761 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dalby, P.A., Hoess, R.H. & DeGrado, W.F. Evolution of binding affinity in a WW domain probed by phage display. Protein Sci. 9, 2366–2376 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Colas, P. et al. Genetic selection of peptide aptamers that recognize and inhibit cyclin-dependent kinase 2. Nature 380, 548–550 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Kwan, A.H. et al. Engineering a protein scaffold from a PHD finger. Structure (Camb) 11, 803–813 (2003).

    Article  CAS  Google Scholar 

  145. Karlsson, G.B. et al. Activation of p53 by scaffold-stabilised expression of Mdm2-binding peptides: visualisation of reporter gene induction at the single-cell level. Br. J. Cancer 91, 1488–1494 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Dennis, M.S. & Lazarus, R.A. Kunitz domain inhibitors of tissue factor-factor VIIa. II. Potent and specific inhibitors by competitive phage selection. J. Biol. Chem. 269, 22137–22144 (1994).

    CAS  PubMed  Google Scholar 

  147. Dennis, M.S. & Lazarus, R.A. Kunitz domain inhibitors of tissue factor-factor VIIa. I. Potent inhibitors selected from libraries by phage display. J. Biol. Chem. 269, 22129–22136 (1994).

    CAS  PubMed  Google Scholar 

  148. Röttgen, P. & Collins, J. A human pancreatic secretory trypsin inhibitor presenting a hypervariable highly constrained epitope via monovalent phagemid display. Gene 164, 243–250 (1995).

    Article  PubMed  Google Scholar 

  149. Ley, A.C., Markland, W. & Ladner, R.C. Obtaining a family of high-affinity, high-specificity protein inhibitors of plasmin and plasma kallikrein. Mol. Divers. 2, 119–124 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Tanaka, A.S. et al. Functional phage display of leech-derived tryptase inhibitor (LDTI): construction of a library and selection of thrombin inhibitors. FEBS Lett. 458, 11–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  151. Volpicella, M., Ceci, L.R., Gallerani, R., Jongsma, M.A. & Beekwilder, J. Functional expression on bacteriophage of the mustard trypsin inhibitor MTI-2. Biochem. Biophys. Res. Commun. 280, 813–817 (2001).

    Article  CAS  PubMed  Google Scholar 

  152. Zhao, A. et al. A conformation-constrained peptide library based on insect defensin A. Peptides 25, 629–635 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Christmann, A., Walter, K., Wentzel, A., Krätzner, R. & Kolmar, H. The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides. Protein Eng. 12, 797–806 (1999).

    Article  CAS  PubMed  Google Scholar 

  154. Smith, G.P. et al. Small binding proteins selected from a combinatorial repertoire of knottins displayed on phage. J. Mol. Biol. 277, 317–332 (1998).

    Article  CAS  PubMed  Google Scholar 

  155. Lehtiö, J., Teeri, T.T. & Nygren, P.-Å. α-amylase inhibitors selected from a combinatorial library of a cellulose binding domain scaffold. Proteins 41, 316–322 (2000).

    Article  PubMed  Google Scholar 

  156. Ku, J. & Schultz, P.G. Alternate protein frameworks for molecular recognition. Proc. Natl. Acad. Sci. USA 92, 6552–6556 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Kolkman, J.A. & Stemmer, W.P. Combinatorial libraries of monomer domains. Patent WO2004044011 (2004).

  158. Fiedler, U. & Rudolph, R. Fabrication of β-pleated sheet proteins with specific binding properties. Patent WO 01/04144 A2 (2001).

  159. Fiedler, M., Fiedler, U. & Rudolph, R. Generation of artificial binding proteins based on ubiquitin proteins. Patent WO2004106368 (2004).

  160. Prior, C.C. Modified transferrin fusion proteins. Patent WO03020746 (2003).

  161. Graversen, J.H. et al. Mutational analysis of affinity and selectivity of kringle-tetranectin interaction. Grafting novel kringle affinity onto the tetranectin lectin scaffold. J. Biol. Chem. 275, 37390–37396 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Boder, E.T. & Wittrup, K.D. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15, 553–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. Hu, C.D., Chinenov, Y. & Kerppola, T.K. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9, 789–798 (2002).

    Article  CAS  PubMed  Google Scholar 

  164. Luker, K.E. et al. Kinetics of regulated protein-protein interactions revealed with firefly luciferase complementation imaging in cells and living animals. Proc. Natl. Acad. Sci. USA 101, 12288–12293 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  PubMed  Google Scholar 

  166. Holt, L.J., Herring, C., Jespers, L.S., Woolven, B.P. & Tomlinson, I.M. Domain antibodies: proteins for therapy. Trends Biotechnol. 21, 484–490 (2003).

    Article  CAS  PubMed  Google Scholar 

  167. Söderlind, E. et al. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat. Biotechnol. 18, 852–856 (2000).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Patrik Forrer, Michael Stumpp and Christian Zahnd for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Plückthun.

Ethics declarations

Competing interests

H.K.B. and P.A. are affiliated with the University of ZŸrich and Molecular Partners AG. A.P. is shareholder in Molecular Partners AG. Molecular Partners AG is developing designed repeat proteins as binding agents for research, diagnostics and therapy.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Binz, H., Amstutz, P. & Plückthun, A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol 23, 1257–1268 (2005). https://doi.org/10.1038/nbt1127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing