Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Engineering antibody Fv fragments for cancer detection and therapy: Bisulfide-stabilized Fv fragments

Abstract

Disulfide-stabilized Fv fragments of antibodies (dsFv) are molecules in which the VH-VL heterodimer is stabilized by an interchain disulfide bond engineered between structurally conserved framework positions distant from complementarity-determining regions (CDRs). This method of stabilization is applicable for the stabilization of many antibody Fvs and has also been applied to a T-cell receptor Fv. A summary of the design strategy, and the construction and production of various dsFvs and dsFv-fusion proteins is presented. Included in the discussion are the biochemical features of dsFvs in comparison with scFvs, the effect of disulfide stabilization on Fv binding and activity, and various applications of dsFvs and dsFv-immunotoxins for tumor imaging and the treatment of solid tumors in animal models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kohler, G. and Milstein, C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

    CAS  PubMed  Google Scholar 

  2. Vitetta, E.S., Thorpe, P.E., and Uhr, J.W. 1993. Immunotoxins: magic bullets or misguided missiles? Trends Pharmacol Sci. 14: 148–54.

    Article  CAS  PubMed  Google Scholar 

  3. Frankel, A.E. 1993. Immunotoxin therapy of cancer. Oncology 7: 69–86.

    CAS  PubMed  Google Scholar 

  4. Brinkmann, U. and Pastan, I. 1994. Immunotoxins against cancer. Biochem. Biophy. Acta. 1198: 27–45.

    CAS  Google Scholar 

  5. Pastan, I. and FitzGerald, D. 1991. ecombinant toxins for cancer treatment. Science 254: 1173–1137.

    Article  CAS  PubMed  Google Scholar 

  6. Pastan, I., Chaudhary, V., and FitzGerald, D.J. 1992. Recombinant toxins as novel therapeutic agents. Annu. Rev. Biochem. 61: 331–354.

    Article  CAS  PubMed  Google Scholar 

  7. Bird, R.E., Hardman, K.D., Jacobson, J.W., Johnson, S., Kaufman, B.M., Lee, S.-M., et al. 1988. Single-chain antigen binding proteins. Science 242: 423–426.

    Article  CAS  PubMed  Google Scholar 

  8. Huston, J.S., Levinson, D., Mudgett-Hunter, M., Tai, M.S., Novotny, J., Margolies, M.N., et al. 1988. Protein engineering of antibody binding sites: recovery of specific activity in an anti-dogoxigenin single-chain Fv analogue produced in Escherichia coli . Proc. Natl. Acad. Sci. USA 85: 5879–5883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Skerra, A. and Pluckthun, A. 1988. Assembly of a functional immunoglobulin Fv fragment in Escherichia coli . Science 240: 1038–1041.

    Article  CAS  PubMed  Google Scholar 

  10. Winter, G., Griffith, A.D., Hawkins, R.E., and Hoogenboom, H.R. 1994. Making antibodies by phage display technology. Ann. Rev. Immunol. 12: 433–455.

    Article  CAS  Google Scholar 

  11. Barbas, C.F. III 1995. Synthetic human antibodies. Nature Medicine 1: 837–839.

    Article  CAS  PubMed  Google Scholar 

  12. Burton, D.R. and Barbas, C.F. III 1994. Human antibodies from combinatorial libraries. Adv. Immunol. 57: 191–280.

    Article  CAS  PubMed  Google Scholar 

  13. Raag, R. and Whitlow, M. 1995. Single-chain Fvs. FASEB J. 9: 73–80.

    Article  CAS  PubMed  Google Scholar 

  14. Brinkmann, U., Reiter, Y., Jung, S.H., Lee, B., and Pastan, I. 1993. A recombinant immunotoxin containing a bisulfide-stabilized Fv fragment. Proc. Natl. Acad. Sci. USA 90: 7538–7542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reiter, Y., Brinkmann, U., Webber, K., Jung, S.-H., Lee, B.K., and Pastan, I. 1994. Engineering interchain disulfide bonds into conserved framework regions of Fv fragments: improved biochemical characteristics of recombinant immunotoxins containing disulflde-stabilized Fv. Protein Eng. 7: 697–704.

    Article  CAS  PubMed  Google Scholar 

  16. Allured, V.S., Collier, R.J., Carroll, S.F., and McKay, D.B. 1986. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0 Angstrom. Proc. Natl. Acad. Sci USA 83: 1320–1324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carroll, S.F. and Collier, R.J. 1987. Active site of Pseudomonas aeruginosa exotoxin A. Glutamic acid 553 is photolabeled by NAD and show functional homology with glutamic acid 148 of diphtheria toxin. J. Biol. Chem. 262: 8707–8711.

    CAS  PubMed  Google Scholar 

  18. Ogata, M., Pastan, I., and FitzGerald, D. 1991. Analysis of Pseudomonas exotoxin activation and conformational changes by using monoclonal antibodies as probes. Infect. Immun. 59: 407–414.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pastan, I. and FitzGerald, D. 1989. Pseudomonas exotoxin: chimeric toxins. J. Biol. Chem. 264: 15157–15160.

    CAS  PubMed  Google Scholar 

  20. Huston, J.S., Mudgett-Hunter, M., Tai, M.S., McCartney, J., Warren, F., Haber, E., et al. 1991. Protein engineering of single-chain Fv analogs and fusion proteins. Methods Enzymol. 203: 46–88.

    Article  CAS  PubMed  Google Scholar 

  21. Whitlow, M. and Filpula, D. 1991. Single-chain Fv proteins and their fusion proteins. Methods: A companion to Methods Enzymol. 2: 97–105.

    Article  CAS  Google Scholar 

  22. Brinkmann, U., Pai, L.H., FitzGerald, D.J., Willingham, M., and Pastan, I. 1991. B3(Fv)-PE38KDEL, a single-chain immunotoxin that causes complete regression of a human carcinoma in mice. Proc. Natl. Acad. Sci. USA 88: 8616–8820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benhar, I. and Pastan, I. 1995. Characterization of B1(Fv)-PE38 and B1(dsFv)-PE38: single-chain and disulfide Fv-immunotoxins with increased activity which cause complete remissions of established human carcinoma xenografts in nude mice. Clin. Cancer. Res. 1: 1023–1029.

    CAS  PubMed  Google Scholar 

  24. Friedman, P., McAndrew, S., Gawlak, S., Chace, D., Trail, P., Brown, J., et al. 1993. BR96 sFv-PE30, a potent single-chain immunotoxin that selectively kills carcinoma cells. Cancer Res. 53: 334–339

    CAS  PubMed  Google Scholar 

  25. Pastan, I., Lovelace, E.T., Gallo, M.G., Rutherford, A.V., Magnani, J.L., and Willingham, M.C. 1991. Characterization of monoclonal antibodies B1 and B3 that react with mucinous adenocarcinomas. Cancer Res. 51: 3781–3787.

    CAS  PubMed  Google Scholar 

  26. Chaudhary, V.K., Queen, C., Junghans, R.P., Waldmann, T.A., FitzGerald, D.J., and Pastan, I. 1989. A recombinant immunotoxin consisting of two antibody variable domains fused to Pseudomonas exotoxin.Nature 339: 394–397.

    Article  CAS  PubMed  Google Scholar 

  27. Batra, J.K., Kasprzyk, P.G., Bird, R.E., Pastan, I., and King, C.R. 1992. Recombinant anti-erbB2 immunotoxins containing Pseudomonas exotoxin. Proc. Natl. Acad. Sci. USA 89: 5867–5871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wels, W., Harwerth, I.M., Mueller, M., Groner, B., and Hynes, N.E. 1992. Selective inhibition of tumor cell growth by a recombinant single-chain antibody-toxin specific for the erbB-2 receptor. Cancer Res. 52: 6310–6317.

    CAS  PubMed  Google Scholar 

  29. Jung, S.-H., Pastan, I., and Lee, B.K. 1994. Design of interchain disulfide bonds in the framework region of the Fv of the monoclonal antibody B3. Proteins: Structure, Function and Genetics 19: 35–47.

    Article  CAS  Google Scholar 

  30. Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S., and Foeller, C. 1991. Sequences of proteins of immunological interest. 5th ed. U.S. Dept. of Health and Human Services, Public Health Service, National Institutes of Health. NIH publication No. 91-3242.

  31. Glockshuber, R., Malia, M., Pfitzinger, I., and Pluckthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments. Biochemistry 29: 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  32. Carter, P., Presta, L., Gorman, C.M., Ridgway, J.B., Henner, D., Wong, W.L., Rowland, A.M., et al.1992. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 89: 4285–4289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodrigues, M.L., Presta, L.G., Kotts, C.E., Wirth, C., Mordenti, J., Osaka, G., et al. 1995. Development of a humanized disulflde-stabilized anti-p185HER2 Fv-beta-lactamase fusion protein for activation of a cephalosporin doxorubicin prodrug. Cancer Res. 55: 63–70.

    CAS  PubMed  Google Scholar 

  34. Young, N.M., MacKenzie, C.R., Narang, S.A., Oomen, R.P., and Baenziger, J.E. 1995. Thermal stabilization of a single-chain Fv antibody fragment by introduction of a disulfide bond. FEBS Lett. 377: 135–139.

    Article  CAS  PubMed  Google Scholar 

  35. Brinkmann, U. and Pastan, I. 1995. Recombinant immunotoxins: from basic research to cancer therapy. ImmunoMethods. 8: 143–156.

    CAS  Google Scholar 

  36. Reiter, Y., Brinkmann, U., Kreitman, R.J., Jung, S.H., Lee, B.K., and Pastan, I. 1994. Stabilization of the Fv fragments in recombinant immunotoxins by disulfide bonds engineered into conserved framework regions. Biochemistry 33: 5451–5459.

    Article  CAS  PubMed  Google Scholar 

  37. Kunkel, T.A. 1985. Rapid and efficient site-directed mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82: 488–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Studier, F.W. and Moffatt, B.A. 1986. Use of bacteriophage T7 polymerase to direct selective expression of cloned gene. J. Mol. Biol. 189: 113–130.

    Article  CAS  PubMed  Google Scholar 

  39. Buchner, J., Pastan, I., and Brinkmann, U. 1992. A method for increasing the yield of property folded recombinant fusion proteins: single-chain immunotoxins from renaturation of bacterial inclusion bodies. Anal. Biochem. 205: 263–270.

    Article  CAS  PubMed  Google Scholar 

  40. Reiter, Y., Pai, L.H., Brinkmann, U., Wang, Q.C., and Pastan, I. 1994. Antitumor activity and pharmacokinetics in mice of a recombinant immunotoxin containing a disulflde-stabilized Fv fragment. Cancer Res. 54: 2714–2718.

    CAS  PubMed  Google Scholar 

  41. Benhar, I., Reiter, Y., Pai, L.H., and Pastan, I. 1995. Administration of disulfide-stabilized Fv-immunotoxins B1 (dsFv)-PE38 and B3(dsFv)-PE38 by continuous infusion increases their efficacy in curing large tumor xenografts in nude mice. Int. J. Cancer 62: 351–355.

    Article  CAS  PubMed  Google Scholar 

  42. Webber, K.O., Reiter, Y., Brinkmann, U., Kreitman, R., and Pastan, I. 1995. Preparation and characterization of a disulfide-stabilized Fv fragment of the anti-Tac antibody: comparison with its single-chain analog. Mol. Immunol. 32: 249–258.

    Article  CAS  PubMed  Google Scholar 

  43. Brinkmann, U., Chowdhury, P.S., Roscoe, D.M., and Pastan, I. 1995. Phage display of disulfide-stabilized Fv fragments. J. Immunol. Method 182: 41–50.

    Article  CAS  Google Scholar 

  44. Reiter, Y., Kurucz, I., Brinkmann, U., Jung, S.-H., Lee, B.K., Segal, D.M., et al. 1995. Construction of a disulfide stabilized TCR Fv indicates that antibody and TCR Fv frameworks are very similar in structure. Immunity 2: 281–287.

    Article  CAS  PubMed  Google Scholar 

  45. Bentley, G.A., Boulot, G., Karjalainen, K., and Mariuzza, R.A. 1995. Crystal structure of the beta chain of a T cell antigen receptor. Science 267: 1984–1987.

    Article  CAS  PubMed  Google Scholar 

  46. Reiter, Y. and Pastan, I. 1996. Antibody engineering of recombinant Fv immunotoxins for improved targeting of cancer. Clin. Cancer Res. 2: 245–252.

    CAS  PubMed  Google Scholar 

  47. Reiter, Y., Brinkmann, U., Jung, S.H., Lee, B.K., Kasprzyk, P.G., King, C.R., and Pastan, I. 1994. Improved binding and antjtumor activity of a lecombinant antJ-erbB2 immunotoxin by disulfide stabilization of the Fv foment. J. Biol. Chem. 269: 18327–18331.

    CAS  PubMed  Google Scholar 

  48. Jain, R. and Baxter, L. 1988. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48: 7022–7033.

    CAS  PubMed  Google Scholar 

  49. Jain, R. 1992. Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res. 50: 814s–819s.

    Google Scholar 

  50. Yokota, T., Milenic, D.E., Whitlow, M., and Schlom, J. 1992. Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52: 3402–3408.

  51. Reiter, Y., Wright, A.F., Tonge, D.W., and Pastan, I. 1996. Recombinant single-chain and disulfide-stabilized Fv immunotoxins that cause complete regression of human colon cancer xenografl in nude mice. Int. J. Cancer. 67: 113–123.

    Article  CAS  PubMed  Google Scholar 

  52. Benhar, I. and Pastan, I. 1995. Cloning expression and characterization of the Fv fragments of the anticarbohydrate monoclonal antibodies B1 and B5 as single-chain immunotoxins. Protein Eng. 7: 1509–1515.

    Article  Google Scholar 

  53. Kuan, C.T. and Pastan, I. 1996. Recombinant immunotoxin containing a disulfide-stabilized Fv directed at erbB2 that does not require proteolytic activation. Biochemistry 35: 2872–2877.

    Article  CAS  PubMed  Google Scholar 

  54. Kreitman, R.J., Chaudhary, V.K., Kozak, R.W., FitzGerald, D.J.P., Waldmann, T.A., and Pastan, I. 1993. Recombinant toxins containing the variable domains of the anti-Tac monoclonal antibody to the IL2 receptor kill malignant cells from patients with chronic lymphocytic leukemia. Blood 80: 2344–2352.

    Google Scholar 

  55. Kreitman, R.J., Chaudhary, V.K., Waldmann, T., Willingham, M.C., FitzGerald, D.J., and Pastan, I. 1990. The recombinant immunotoxin anti-Tac(Fv)-PE40 is cytotoxic toward peripheral blood malignant cells from patients with adult T-cell leukemia. Proc. Natl. Acad. Sci. USA 87: 8291–8295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kreitman, R.J., Bailon, P., Chaudhary, V.K., FitzGerald, D.J.P., and Pastan, I. 1994. Recombinant immunotoxins containing anti-Tac(Fv) and derivatives of Pseudomonas exotoxin produce complete regression in mice of an interieukin-2 receptor-expressing human carcinoma. Blood 83: 426–434.

    CAS  PubMed  Google Scholar 

  57. Kreitman, R.J. and Pastan, I. 1994. Recombinant single-chain immunotoxins against T and B cell leukemias. Leukemia & Lymphoma 13: 1–10.

    CAS  Google Scholar 

  58. Reiter, Y., Pai, L., Wang, Q.-C., and Pastan, I. 1996. Preclinical characterization of e23(dsFv)-PE38, a recombinant disulfide-stabilized Fv immunotoxin directed at erbB2. Clin. Cancer Res. Submitted.

  59. Kuan, C.T. and Pastan, I. 1996. Improved antitumor activity of a recombinant anti-LewisY immunotoxin not requiring proteolytic activation. Proc. Natl. Acad. Sci. USA 93: 974–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Waldmann, T.A., Pastan, I.H., Gansow, O.A., and Junghans, R.P. 1992. The multichain inter-leukin-2 receptor a target for immunotherapy. Ann. Intern. Med. 116: 148–160.

    Article  CAS  PubMed  Google Scholar 

  61. Webber, K.O., Kreitman, R.J., and Pastan, I. 1995 Rapid and specific uptake of anti-Tac disulfide-stabilized Fv by interleukin-2 receptor bearing tumors. Cancer Res. 55: 318–323.

    CAS  PubMed  Google Scholar 

  62. Choi, C.W., Lang, L., Lee, J.T., Webber, K.O., Yoo, T.M., Chang, H.K., et al. 1995. Biodistribution of 18F- and 125I-labeled anti-Tac disulfide-stabilized Fv fragments in nude mice with interieukin 22 receptor-positive tumor xenografts. Cancer Res. 55: 5323–5329.

    CAS  PubMed  Google Scholar 

  63. Kurucz, I., Jost, C.R., George, A.J.T., Andrew, S.M., and Segal, D.M. 1993. A bacterially expressed single-chain Fv construct from the 2B4 T-cell receptor. Proc. Natl. Acad. Sci. USA 90: 3830–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Soo-Hoo, W.F., Lacy, M.J., Denzin, L.K., Voss, E.W., Hardman, K.D., and Krantz, D.M. 1992. Characterization of a single-chain T-cell receptor expressed in E. coli . Proc. Natl. Acad. Sci. USA 89: 4759–4763.

    Article  Google Scholar 

  65. Novotny, J., Ganyu, R.K., Smiley, S.T., Hussey, R.E., Luther, M.A., Recny, M.A., et al. 1991. A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties. Proc. Natl. Acad. Sci. USA 88: 8646–8650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ward, S.E. 1992. Secretion of T-cell receptor fragments from recombinant E. colicells. J. Mol. Biol. 224: 885–890.

    Article  CAS  PubMed  Google Scholar 

  67. Wulfing, C. and Pluckthun, A. 1994. Correctly folded T-cell receptor fragments in the periplasm of E. coli . J. Mol. Biol.242: 655–669.

    Article  CAS  PubMed  Google Scholar 

  68. Kreitman, R.J., Schneider, W.P., Queen, C., Tsudo, M., FitzGerald, D.J., Waldmann, T.A., et al. 1992. Mik-beta 1(Fv)-PE40, a recombinant immunotoxin cytotoxic toward cells bearing the beta-chain of the IL-2 receptor. J. Immunol. 149: 2810–2815.

    CAS  PubMed  Google Scholar 

  69. Chaudhary, V.K., Gallo, M.G., FitzGerald, D.J., and Pastan, I. 1990. A recombinant single-chain immunotoxin composed of anti-Tac variable regions and a truncated diphtheria toxin. Proc. Natl. Acad. Sci. USA 87: 9491–9494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Batra, J.K., FitzGerald, D.J., Chaudhary, V.K., and Pastan, I. 1991. Single chain immunotoxins directed at the human transferrin receptor containing Pseudomonas exotoxin A or diphtheria toxin: anti-TFR(Fv)-PE40 and DT388-anti-TFR(Fv). Mol. Cell Biol. 11: 2200–2205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Batra, J.K., Jinno, Y., Chaudhary, V.K., Kondo, T., Willingham, M.C., FitzGerald, D.J., et al. 1989. Antitumor activity in mice of an immunotoxin made with anti-transferrin receptor and a recombinant form of Pseudomonasexotoxin. Proc. Natl. Acad. Sci. USA 86: 8545–8549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brinkmann, U., Gallo, M., Brinkmann, E., Kunwar, S., and Pastan, I. 1993. A recombinant immunotoxin active on prostate cancer cells composed of the Fv-region of MAb PR1 and a truncated form of Pseudomonasexotoxin. Proc. Natl. Acad. Sci USA 90: 547–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chaudhary, V.K., Jinno, Y., FitzGerald, D., and Pastan, I. 1990. Pseudomonasexotoxin contains a specific sequence at the carboxyl terminus that is required for cytotoxicity. Proc. Natl. Acad. Sci. USA 87: 308–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Seetharam, S., Chaudhary, V., FitzGerald, D., and Pastan, I. 1991. Increased cytotoxic activity of Pseudomonasexotoxin and two chimeric toxins ending in KDEL. J. Biol. Chem. 266: 17376–17381.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiter, Y., Brinkmann, U., Lee, B. et al. Engineering antibody Fv fragments for cancer detection and therapy: Bisulfide-stabilized Fv fragments. Nat Biotechnol 14, 1239–1245 (1996). https://doi.org/10.1038/nbt1096-1239

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1096-1239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing