Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature

Abstract

Interleukin-12 (IL-12) is a heterodimeric cytokine with potent immunostimulatory activity and anti-angiogenic properties. Its clinical applications are limited, however, by severe side-effects. Here we report that an IL-12 fusion protein, consisting of IL-12 fused to a human antibody fragment specific to the oncofetal ED-B domain of fibronectin, markedly enhances the antitumor activity of this cytokine, as demonstrated in a mouse lung-metastasis model and in two models of mice bearing different aggressive murine tumors. The residual small tumor masses seen in the treated mice were infiltrated with lymphocytes, macrophages, and natural killer cells and had elevated interferon γ (IFN-γ). These results are of therapeutic relevance as the ED-B domain of fibronectin, a naturally occurring marker of angiogenesis identical in mouse and man, is expressed in the majority of aggressive solid tumors but is not detectable in normal vessels and tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL–12 fusion proteins.
Figure 2: Effect of IL12–L19 on tumor growth studied in two syngenic murine tumor models.
Figure 3: Antibody response to IL–12 fusion proteins.
Figure 4: Effect of IL12–L19 versus IL-12 on tumor growth.
Figure 5: Antimetastatic activity of IL-12 and IL12–L19.

Similar content being viewed by others

References

  1. Tsung, K., Meko, J.B., Peplinski, G.R., Tsung, Y.L. & Norton, J.A. IL-12 induces T helper 1–directed antitumor response. J. Immunol. 158, 3359–3365 (1997).

    CAS  PubMed  Google Scholar 

  2. Brunda, M.J. et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors, J. Exp. Med. 178, 1223–1230 (1993).

    Article  CAS  Google Scholar 

  3. Rodolfo, M. & Colombo, M.P. Interleukin-12 as an adjuvant for cancer immunotherapy. Methods 19, 114–120 (1999).

    Article  CAS  Google Scholar 

  4. Nastala, C.L. et al. Recombinant IL-12 administration induces tumor regression in association with IFN-γ production. J. Immunol. 153, 1697–1706 (1994).

    CAS  PubMed  Google Scholar 

  5. Atkins, M.B. et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res. 3, 409–417 (1997).

    CAS  PubMed  Google Scholar 

  6. Car, B.D., Eng, V.M., Lipman, J.M. & Anderson, T.D. The toxicology of interleukin-12: a review. Toxicol. Pathol. 27, 58–63 (1999).

    Article  CAS  Google Scholar 

  7. Jain, R.K. & Baxter, L.T. Mechanisms of heterogenous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. Cancer Res. 48, 7022–7032 (1988).

    CAS  PubMed  Google Scholar 

  8. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  9. Voest, E.E. et al. Inhibition of angiogenesis in vivo by interleukin 12. J. Natl. Cancer Inst. 87, 581–586 (1995).

    Article  CAS  Google Scholar 

  10. Duda, D.G. et al. Direct in vitro evidence and in vivo analysis of the antiangiogenesis effects of interleukin 12. Cancer Res. 60, 1111–1116 (2000).

    CAS  PubMed  Google Scholar 

  11. Zardi, L. et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J. 6, 2337–2342 (1987).

    Article  CAS  Google Scholar 

  12. Carnemolla, B. et al. A tumour-associated fibronectin isoform generated by alternative splicing of messanger RNA precursors. J. Cell. Biol. 108, 1139–1148 (1989).

    Article  CAS  Google Scholar 

  13. Castellani, P. et al. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int. J. Cancer 59, 612–618 (1994).

    Article  CAS  Google Scholar 

  14. Kaczmarek, J. et al. Distribution of oncofetal fibronectin isoforms in normal, hyperplastic and neoplastic human breast tissues. Int. J. Cancer 58, 11–16 (1994).

    Article  Google Scholar 

  15. Viti, F., Tarli, L., Giovannoni, L., Zardi, L. & Neri, D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res. 59, 347–352 (1999).

    CAS  PubMed  Google Scholar 

  16. Birchler, M., Viti, F., Zardi, L., Spiess, B. & Neri, D. Selective targeting and photocoagulation of ocular angiogenesis mediated by a phage-derived recombinant antibody. Nat. Biotechnol. 17, 984–988 (1999).

    Article  CAS  Google Scholar 

  17. Nilsson, F., Koshmehl, H., Zardi, L. & Neri, D. Targeted delivery of tissue factor to the ED-B domain of fibronectin, a marker of angiogenesis, mediates the infarction of solid tumours in mice. Cancer Res. 61, 711–716 (2001).

    CAS  Google Scholar 

  18. Lieschke, G.J., Rao, P.K., Gately, M.K. & Mulligan, R.C. Bioactive murine and human interleukin-12 fusion proteins which retain antitumor activity in vivo. Nat. Biotechnol. 15, 35–40 (1997).

    Article  CAS  Google Scholar 

  19. Smith-Gill, S.J., Mainhart, C.R., Lavoie, T.B., Rudikoff, S. & Potter, M. VL–VH expression by monoclonal antibodies recognizing avian lysozyme. J. Immunol. 132, 963–967 (1984).

    CAS  PubMed  Google Scholar 

  20. Hopp, T.P. et al. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio/Technology 6, 1204–1210 (1988).

    Article  CAS  Google Scholar 

  21. Graham, F.L., Smiley, J., Russell, W.C. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–72 (1977).

    Article  CAS  Google Scholar 

  22. Tarli, L. et al. A high affinity human antibody that targets tumoural blood vessels. Blood 94,192–198 (1999).

    CAS  PubMed  Google Scholar 

  23. King, D.J. et al. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res. 54, 6176–6185 (1994).

    CAS  PubMed  Google Scholar 

  24. Demartis, S., Tarli, L., Borsi, L., Zardi, L. & Neri, D. In vivo targeting of tumour neo-vasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur. J. Nucl. Med. 28, 534–539 (2001).

    Article  CAS  Google Scholar 

  25. Trinchieri, G. Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 84, 4008–4027 (1994).

    CAS  PubMed  Google Scholar 

  26. Halin, C. & Neri, D. Antibody-based targeting of angiogenesis. Crit. Rev. Ther. Drug Deliv. Syst. 18, 299–339 (2001).

    CAS  Google Scholar 

  27. Boehm, U., Klamp, T., Groot, M. & Howard, J.C. Cellular responses to interferon-γ. Annu. Rev. Immunol. 15, 749–795 (1997).

    Article  CAS  Google Scholar 

  28. Tannenbaum, C.S. & Hamilton, T.A. Immune-inflammatory mechanisms in IFN-γ-mediated anti-tumor activity. Semin. Cancer 10, 113–123 (2000).

    Article  CAS  Google Scholar 

  29. Bosslet, K. et al. Elucidation of the mechanism enabling tumor selective prodrug monotherapy. Cancer Res. 58, 1195–1201 (1998).

    CAS  Google Scholar 

  30. Tarli, L. Tumour targeting and therapy experiments using a chemically-modified human antibody fragment directed against the ED-B domain of fibronectin, a marker of angiogenesis (PhD dissertation). (Swiss Federal Institute of Technology, Zürich, Diss. ETH no. 12680; 2000).

  31. Lode, H.N. et al. Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91, 1706–1715 (1998).

    CAS  PubMed  Google Scholar 

  32. Peng, L.S., Penichet, M.L. & Morrison, S.L. A single-chain IL-12 IgG3 antibody fusion protein retains antibody specificity and IL-12 bioactivity and demonstrates antitumor activity. J. Immunol. 163, 250–258 (1994).

    Google Scholar 

  33. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  Google Scholar 

  34. Bernstine, E.G., Hooper, M.L., Grandchamp, S. & Ephrussi, B. Alkaline phosphatase activity in mouse teratoma. Proc. Nat. Acad. USA 70, 3899–3903 (1973).

    Article  CAS  Google Scholar 

  35. Corbett, T.H., Griswold, D.P., Roberts, B.J., Peckham, J.C. & Schabel, F.M. Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note in carcinogen structure. Cancer Res. 35, 2434–2439 (1975).

    CAS  PubMed  Google Scholar 

  36. Neri, D. et al. Radioactive labeling of recombinant antibody fragments by phosphorylation using human casein kinase II and [γ-32P]ATP. Nat. Biotechnol. 14, 485–490 (1996).

    Article  CAS  Google Scholar 

  37. Gately, M.K., Chizzonite, R. & Presky, D.H. Measurement of human and mouse interleukin-12. in Current protocols in immunology (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 6.16.1–6.16.15 (John Wiley & Sons, New York; 1995).

Download references

Acknowledgements

This work was supported by grants from the Krebsforschung Schweiz, the Bundesamt für Bildung und Wissenschaft (EC Project) and ETH Zürich (D.N.), the Thüringer Ministerium für Wissenschaft, Forschung und Kultur (IZKF and HSPIII projects) (H.K.), and the Associazione Italiana Ricerca sul Cancro (A.I.R.C.) (L.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Neri.

Ethics declarations

Competing interests

D.N. and L.Z. are consultants and shareholders of Philogen, a biotechnology company that has acquired the rights to the L19 antibody from their academic institutions (the Swiss Federal Institute of Technology Zürich and the National Cancer Research Institute, Genoa, respectively).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halin, C., Rondini, S., Nilsson, F. et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat Biotechnol 20, 264–269 (2002). https://doi.org/10.1038/nbt0302-264

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0302-264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing