Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation

Abstract

The ability to specifically upregulate genes in vivo holds great therapeutic promise. Here we show that inhibition or degradation of natural antisense transcripts (NATs) by single-stranded oligonucleotides or siRNAs can transiently and reversibly upregulate locus-specific gene expression. Brain-derived neurotrophic factor (BDNF) is normally repressed by a conserved noncoding antisense RNA transcript, BDNF-AS. Inhibition of this transcript upregulates BDNF mRNA by two- to sevenfold, alters chromatin marks at the BDNF locus, leads to increased protein levels and induces neuronal outgrowth and differentiation both in vitro and in vivo. We also show that inhibition of NATs leads to increases in glial-derived neurotrophic factor (GDNF) and ephrin receptor B2 (EPHB2) mRNA. Our data suggest that pharmacological approaches targeting NATs can confer locus-specific gene upregulation effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic organization of the human BDNF locus.
Figure 2: Antisense-mediated regulation of sense mRNA and protein.
Figure 3: Bdnf upregulation increases neuronal outgrowth.
Figure 4: Bdnf-AS regulates Bdnf mRNA and protein in vivo.
Figure 5: Blocking of Bdnf-AS, in vivo, causes an increase in neuronal survival and proliferation.
Figure 6: Removal of BDNF-AS resulted in the modification of chromatin marks.

Similar content being viewed by others

References

  1. Mehler, M.F. & Mattick, J.S. Non-coding RNAs in the nervous system. J. Physiol. (Lond.) 575, 333–341 (2006).

    Article  CAS  Google Scholar 

  2. Mattick, J.S. & Makunin, I.V. Non-coding RNA. Hum. Mol. Genet. 15 Spec No 1, R17–R29 (2006).

    Article  CAS  Google Scholar 

  3. Bernard, D. et al. A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J. 29, 3082–3093 (2010).

    Article  CAS  Google Scholar 

  4. Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F. & Mattick, J.S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA 105, 716–721 (2008).

    Article  CAS  Google Scholar 

  5. Faghihi, M.A. et al. Expression of a noncoding RNA is elevated in Alzheimer's disease and drives rapid feed-forward regulation of beta-secretase. Nat. Med. 14, 723–730 (2008).

    Article  CAS  Google Scholar 

  6. Scheele, C. et al. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics 8, 74 (2007).

    Article  Google Scholar 

  7. Khalil, A.M., Faghihi, M.A., Modarresi, F., Brothers, S.P. & Wahlestedt, C. A novel RNA transcript with antiapoptotic function is silenced in fragile x syndrome. PLoS ONE 3, e1486 (2008).

    Article  Google Scholar 

  8. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  Google Scholar 

  9. Faghihi, M.A. & Wahlestedt, C. Regulatory roles of natural antisense transcripts. Nat. Rev. Mol. Cell Biol. 10, 637–643 (2009).

    Article  CAS  Google Scholar 

  10. Janowski, B.A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat. Chem. Biol. 3, 166–173 (2007).

    Article  CAS  Google Scholar 

  11. Watts, J.K. et al. Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters. Nucleic Acids Res. 38, 5242–5259 (2010).

    Article  CAS  Google Scholar 

  12. Morris, K.V., Santoso, S., Turner, A.M., Pastori, C. & Hawkins, P.G. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 4, e1000258 (2008).

    Article  Google Scholar 

  13. Hawkins, P.G. & Morris, K.V. Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription 1, 165–175 (2010).

    Article  Google Scholar 

  14. Pruunsild, P., Kazantseva, A., Aid, T., Palm, K. & Timmusk, T. Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90, 397–406 (2007).

    Article  CAS  Google Scholar 

  15. Liu, Q.R. et al. Human brain derived neurotrophic factor (BDNF) genes, splicing patterns, and assessments of associations with substance abuse and Parkinson's disease. Am. J. Med. Genet. 134, 93–103 (2005).

    Article  Google Scholar 

  16. Hasbi, A. et al. Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc. Natl. Acad. Sci. USA 106, 21377–21382 (2009).

    Article  CAS  Google Scholar 

  17. Trzaska, K.A. et al. Brain-derived neurotrophic factor facilitates maturation of mesenchymal stem cell-derived dopamine progenitors to functional neurons. J. Neurochem. 110, 1058–1069 (2009).

    Article  CAS  Google Scholar 

  18. Yoshimura, R., Ito, K. & Endo, Y. Differentiation/maturation of neuropeptide Y neurons in the corpus callosum is promoted by brain-derived neurotrophic factor in mouse brain slice cultures. Neurosci. Lett. 450, 262–265 (2009).

    Article  CAS  Google Scholar 

  19. Antal, A. et al. Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimulat. 3, 230–237 (2010).

    Article  Google Scholar 

  20. Castillo, D.V. & Escobar, M.L. A role for MAPK and PI-3K signaling pathways in brain-derived neurotrophic factor modification of conditioned taste aversion retention. Behav. Brain Res. 217, 248–252 (2011).

    Article  CAS  Google Scholar 

  21. Nikolakopoulou, A.M., Meynard, M.M., Marshak, S. & Cohen-Cory, S. Synaptic maturation of the Xenopus retinotectal system: effects of brain-derived neurotrophic factor on synapse ultrastructure. J. Comp. Neurol. 518, 972–989 (2010).

    Article  CAS  Google Scholar 

  22. Choi, D.C. et al. Prelimbic cortical BDNF is required for memory of learned fear but not extinction or innate fear. Proc. Natl. Acad. Sci. USA 107, 2675–2680 (2010).

    Article  CAS  Google Scholar 

  23. Ortega, J.A. & Alcantara, S. BDNF/MAPK/ERK-induced BMP7 expression in the developing cerebral cortex induces premature radial glia differentiation and impairs neuronal migration. Cereb. Cortex 20, 2132–2144 (2010).

    Article  Google Scholar 

  24. Chapleau, C.A., Larimore, J.L., Theibert, A. & Pozzo-Miller, L. Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J. Neurodev. Disord. 1, 185–196 (2009).

    Article  Google Scholar 

  25. Wu, S.Y. et al. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain Behav. Immun. 25, 135–146 (2011).

    Article  CAS  Google Scholar 

  26. Yang, L.C. et al. Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS ONE 5, e9851 (2010).

    Article  Google Scholar 

  27. Laske, C. et al. Higher BDNF serum levels predict slower cognitive decline in Alzheimer's disease patients. Int. J. Neuropsychopharmacol. 14, 399–404 (2011).

    Article  CAS  Google Scholar 

  28. Zeng, Y., Zhao, D. & Xie, C.W. Neurotrophins enhance CaMKII activity and rescue amyloid-beta-induced deficits in hippocampal synaptic plasticity. J. Alzheimers Dis. 21, 823–831 (2010).

    Article  CAS  Google Scholar 

  29. Frade, J.M. & Lopez-Sanchez, N. A novel hypothesis for Alzheimer's disease based on neuronal tetraploidy induced by p75(NTR). Cell Cycle 9, 1934–1941 (2010).

    Article  CAS  Google Scholar 

  30. Massa, S.M. et al. Small-molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest. 120, 1774–1785 (2010).

    Article  CAS  Google Scholar 

  31. Luo, K.R. et al. Differential regulation of neurotrophin S100B and BDNF in two rat models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 1433–1439 (2010).

    Article  CAS  Google Scholar 

  32. Gonul, A.S. et al. Association of the brain-derived neurotrophic factor Val66Met polymorphism with hippocampus volumes in drug-free depressed patients. World J. Biol. Psychiatry 12, 110–118 (2011).

    Article  Google Scholar 

  33. Dell'Osso, L. et al. Associations between brain-derived neurotrophic factor plasma levels and severity of the illness, recurrence and symptoms in depressed patients. Neuropsychobiology 62, 207–212 (2010).

    Article  CAS  Google Scholar 

  34. He, Y., Vogelstein, B., Velculescu, V.E., Papadopoulos, N. & Kinzler, K.W. The antisense transcriptomes of human cells. Science 322, 1855–1857 (2008).

    Article  CAS  Google Scholar 

  35. Liu, Q.R. et al. Rodent BDNF genes, novel promoters, novel splice variants, and regulation by cocaine. Brain Res. 1067, 1–12 (2006).

    Article  CAS  Google Scholar 

  36. Abuhatzira, L., Makedonski, K., Kaufman, Y., Razin, A. & Shemer, R. MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. Epigenetics 2, 214–222 (2007).

    Article  Google Scholar 

  37. Ogier, M. et al. Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome. J. Neurosci. 27, 10912–10917 (2007).

    Article  CAS  Google Scholar 

  38. Klein, M.E. et al. Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nat. Neurosci. 10, 1513–1514 (2007).

    Article  CAS  Google Scholar 

  39. Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).

    Article  CAS  Google Scholar 

  40. Wahlestedt, C. et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl. Acad. Sci. USA 97, 5633–5638 (2000).

    Article  CAS  Google Scholar 

  41. Park, H.R. et al. A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci. Lett. 482, 235–239 (2010).

    Article  CAS  Google Scholar 

  42. Im, S.H. et al. Induction of striatal neurogenesis enhances functional recovery in an adult animal model of neonatal hypoxic-ischemic brain injury. Neuroscience 169, 259–268 (2010).

    Article  CAS  Google Scholar 

  43. Chase, A. & Cross, N.C. Aberrations of EZH2 in cancer. Clin. Cancer Res. 17, 2613–2618 (2011).

    Article  CAS  Google Scholar 

  44. Morris, K.V. Long antisense non-coding RNAs function to direct epigenetic complexes that regulate transcription in human cells. Epigenetics 4, 296–301 (2009).

    Article  CAS  Google Scholar 

  45. Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40, 939–953 (2010).

    Article  CAS  Google Scholar 

  46. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    Article  CAS  Google Scholar 

  47. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    Article  CAS  Google Scholar 

  48. Yu, W. et al. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 451, 202–206 (2008).

    Article  CAS  Google Scholar 

  49. Cho, D.H. et al. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell 20, 483–489 (2005).

    Article  CAS  Google Scholar 

  50. Lopez-Toledano, M.A. & Shelanski, M.L. Neurogenic effect of beta-amyloid peptide in the development of neural stem cells. J. Neurosci. 24, 5439–5444 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Q.-R. Liu from the National Institute of Drug Abuse kindly provided us with constructs that contain three splice variants of the human BDNF-AS transcript. We thank C. Coito, P. Frost, J. Hsiao and O. Khorkova at OPKO-CURNA for helpful discussions. The US National Institutes of Health (5R01NS063974 and 5RC2AG036596) funded this work. A significant portion of this study was carried out when the investigators were employed at The Scripps Research Institute and/or the Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Contributions

F.M., M.A.F., M.A.L.-T., R.P.F. and M.M. each contributed experimental data to this work. M.P.v.d.B. performed RNA deep sequencing of brain samples. F.M., M.A.F., M.A.L.-T., R.P.F., M.M., S.P.B. and C.W. all contributed to the concepts behind the work; each were also responsible for contributions to the text of this article.

Corresponding author

Correspondence to Claes Wahlestedt.

Ethics declarations

Competing interests

C.W. is a consultant for OPKO-CURNA. M.P.V.d.B. is an employee of Genentech.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1, Supplementary Figures 1–17 and Supplementary Data 1,2 (PDF 1290 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Modarresi, F., Faghihi, M., Lopez-Toledano, M. et al. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol 30, 453–459 (2012). https://doi.org/10.1038/nbt.2158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2158

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research