Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mediators of vascular remodelling co-opted for sequential steps in lung metastasis

Abstract

Metastasis entails numerous biological functions that collectively enable cancerous cells from a primary site to disseminate and overtake distant organs. Using genetic and pharmacological approaches, we show that the epidermal growth factor receptor ligand epiregulin, the cyclooxygenase COX2, and the matrix metalloproteinases 1 and 2, when expressed in human breast cancer cells, collectively facilitate the assembly of new tumour blood vessels, the release of tumour cells into the circulation, and the breaching of lung capillaries by circulating tumour cells to seed pulmonary metastasis. These findings reveal how aggressive primary tumorigenic functions can be mechanistically coupled to greater lung metastatic potential, and how such biological activities may be therapeutically targeted with specific drug combinations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EREG, MMP1, MMP2 and COX2 cooperate to mediate primary tumour growth.
Figure 2: EREG, MMP1, MMP2 and COX2 mediate tumour angiogenic progression.
Figure 3: Genetic inhibition of EREG, MMP1, MMP2 and COX2 prevents metastatic extravasation.
Figure 4: Pharmacological inhibition of tumour growth and dissemination in orthotopically implanted primary tumours.
Figure 5: Targeted inhibition of metastatic extravasation and lung colonization by LM2 and primary malignant cells.

Similar content being viewed by others

References

  1. Fidler, I. J. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Rev. Cancer 3, 453–458 (2003)

    Article  ADS  CAS  Google Scholar 

  2. Hynes, R. O. Metastatic potential: generic predisposition of the primary tumor or rare, metastatic variants—or both? Cell 113, 821–823 (2003)

    Article  CAS  Google Scholar 

  3. Gupta, G. P. & Massagué, J. Cancer metastasis: building a framework. Cell 127, 679–695 (2006)

    Article  CAS  Google Scholar 

  4. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000)

    Article  ADS  CAS  Google Scholar 

  5. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002)

    Article  CAS  Google Scholar 

  6. Chang, H. Y. et al. Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2, E7 (2004)

    Article  Google Scholar 

  7. Paik, S. et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N. Engl. J. Med. 351, 2817–2826 (2004)

    Article  CAS  Google Scholar 

  8. Wang, Y. et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679 (2005)

    Article  CAS  Google Scholar 

  9. Bild, A. H. et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439, 353–357 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Massagué, J. Sorting out breast-cancer gene signatures. N. Engl. J. Med. 356, 294–297 (2007)

    Article  Google Scholar 

  11. Bernards, R. & Weinberg, R. A. A progression puzzle. Nature 418, 823 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Minn, A. J. et al. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Minn, A. J. et al. Lung metastasis genes couple breast tumor size and metastatic spread. Proc. Natl Acad. Sci. USA 104, 6740–6745 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Cailleau, R., Young, R., Olive, M. & Reeves, W. J. Breast tumor cell lines from pleural effusions. J. Natl Cancer Inst. 53, 661–674 (1974)

    Article  CAS  Google Scholar 

  15. Gupta, G. P. et al. Identifying site-specific metastasis genes and functions. Cold Spring Harb. Symp. Quant. Biol. 70, 1–10 (2005)

    Google Scholar 

  16. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003)

    Article  CAS  Google Scholar 

  17. Minn, A. J. et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest. 115, 44–55 (2005)

    Article  CAS  Google Scholar 

  18. Wary, K. K., Thakker, G. D., Humtsoe, J. O. & Yang, J. Analysis of VEGF-responsive genes involved in the activation of endothelial cells. Mol. Cancer 2, 25 (2003)

    Article  Google Scholar 

  19. Carmeliet, P. & Jain, R. K. Angiogenesis in cancer and other diseases. Nature 407, 249–257 (2000)

    Article  CAS  Google Scholar 

  20. Krysan, K. et al. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res. 65, 6275–6281 (2005)

    Article  CAS  Google Scholar 

  21. Dannenberg, A. J., Lippman, S. M., Mann, J. R., Subbaramaiah, K. & DuBois, R. N. Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J. Clin. Oncol. 23, 254–266 (2005)

    Article  CAS  Google Scholar 

  22. Howe, L. R. et al. HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res. 65, 10113–10119 (2005)

    Article  CAS  Google Scholar 

  23. Pai, R. et al. Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nature Med. 8, 289–293 (2002)

    Article  CAS  Google Scholar 

  24. Goldstein, N. I., Prewett, M., Zuklys, K., Rockwell, P. & Mendelsohn, J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin. Cancer Res. 1, 1311–1318 (1995)

    CAS  PubMed  Google Scholar 

  25. Gijbels, K., Galardy, R. E. & Steinman, L. Reversal of experimental autoimmune encephalomyelitis with a hydroxamate inhibitor of matrix metalloproteases. J. Clin. Invest. 94, 2177–2182 (1994)

    Article  CAS  Google Scholar 

  26. Jacoby, R. F., Seibert, K., Cole, C. E., Kelloff, G. & Lubet, R. A. The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res. 60, 5040–5044 (2000)

    CAS  PubMed  Google Scholar 

  27. Gately, S. & Li, W. W. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin. Oncol. 31, 2–11 (2004)

    Article  CAS  Google Scholar 

  28. Karashima, T. et al. Inhibition of angiogenesis by the antiepidermal growth factor receptor antibody ImClone C225 in androgen-independent prostate cancer growing orthotopically in nude mice. Clin. Cancer Res. 8, 1253–1264 (2002)

    CAS  PubMed  Google Scholar 

  29. Overall, C. M. & Kleifeld, O. Tumour microenvironment—opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nature Rev. Cancer 6, 227–239 (2006)

    Article  CAS  Google Scholar 

  30. Gomis, R. R., Alarcon, C., Nadal, C., Van Poznak, C. & Massagué, J. C/EBPβ at the core of the TGFβ cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 10, 203–214 (2006)

    Article  CAS  Google Scholar 

  31. Giordano, S. H. et al. Is breast cancer survival improving? Cancer 100, 44–52 (2004)

    Article  Google Scholar 

  32. Solomayer, E. F., Diel, I. J., Meyberg, G. C., Gollan, C. & Bastert, G. Metastatic breast cancer: clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res. Treat. 59, 271–278 (2000)

    Article  CAS  Google Scholar 

  33. Baselga, J. & Norton, L. Focus on breast cancer. Cancer Cell 1, 319–322 (2002)

    Article  CAS  Google Scholar 

  34. Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37, 1281–1288 (2005)

    Article  CAS  Google Scholar 

  35. Luo, F. R. et al. Correlation of pharmacokinetics with the antitumor activity of Cetuximab in nude mice bearing the GEO human colon carcinoma xenograft. Cancer Chemother. Pharmacol. 56, 455–464 (2005)

    Article  CAS  Google Scholar 

  36. Niederberger, E. et al. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-κB. FASEB J. 15, 1622–1624 (2001)

    Article  CAS  Google Scholar 

  37. Wild, R., Ramakrishnan, S., Sedgewick, J. & Griffioen, A. W. Quantitative assessment of angiogenesis and tumor vessel architecture by computer-assisted digital image analysis: effects of VEGF-toxin conjugate on tumor microvessel density. Microvasc. Res. 59, 368–376 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Minn, D. Padua, C. Van Poznak, L. Norton, C. Hudis, Y. Pylayeva, P. Gupta, T. Westbrook and Z. Lazar for insightful discussions and technical suggestions. We also thank S. Tulley and members of the Molecular Cytology Core Facility for expert technical assistance. J.M. was funded by a National Institutes of Health grant, and by grants of the W. M. Keck Foundation and the Kleberg Foundation. G.P.G. is supported by an NIH Medical Scientist Training Program grant and a Department of Defense Breast Cancer Research Program pre-doctoral award. D.X.N. is a Berlex postdoctoral fellow of the Damon Runyon Cancer Research Foundation. A.C.C. was supported by an ASCO Young Investigator Award and by the Charles A. Dana Foundation. J.M. is an Investigator of the Howard Hughes Medical Institute.

Author Contributions J.M. designed and supervised experiments. G.P.G., D.X.N. and A.C.C. designed experiments; G.P.G., D.X.N., A.C.C., P.D.B. and J.Y.K. performed experiments; C.N. and R.R.G. isolated metastatic cells from clinical samples; K.T.-M. supervised histological and confocal microscopy imaging; J.M., G.P.G., D.X.N. and A.C.C. analysed data and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Massagué.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-S9 with Legends. (PDF 2427 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, G., Nguyen, D., Chiang, A. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007). https://doi.org/10.1038/nature05760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05760

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing