Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Differential PAX5 levels promote malignant B-cell infiltration, progression and drug resistance, and predict a poor prognosis in MCL patients independent of CCND1

Abstract

Reduced Paired box 5 (PAX5) levels have important roles in the pathogenesis of human B-cell acute lymphoblastic leukemia. However, the role of PAX5 in human lymphoma remains unclear. We generated PAX5-silenced cells using mantle cell lymphoma (MCL) as a model system. These PAX5 MCL cells exhibited unexpected phenotypes, including increased proliferation in vitro, enhanced tumor infiltration in vivo, robust adhesion to the bone marrow stromal cells and increased retention of quiescent stem-like cells. These phenotypes were attributed to alterations in the expression of genes including p53 and Rb, and to phosphoinositide 3-kinase/mammalian target of rapamycin and phosphorylated signal transducer and activator of transcription 3 pathway hyperactivation. On PAX5 silencing, the MCL cells displayed upregulated interleukin (IL)-6 expression and increased responses to paracrine IL-6. Moreover, decreased PAX5 levels in CD19+ MCL cells correlated with their increased infiltration and progression; thus, PAX5 levels can be used as a prognostic marker independent of cyclin D1 in advanced MCL patients. Importantly, high-throughput screening of 3800 chemical compounds revealed that PAX5 MCL cells are highly drug-resistant compared with PAX5 wild-type MCL cells. Collectively, the results of our study support a paradigm shift regarding the functions of PAX5 in human B-cell cancer and encourage future efforts to design effective therapies against MCL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hagman J, Lukin K . Transcription factors drive B cell development. Curr Opin Immunol 2006; 18: 127–134.

    Article  CAS  PubMed  Google Scholar 

  2. Czerny T, Schaffner G, Busslinger M . DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev 1993; 7: 2048–2061.

    Article  CAS  PubMed  Google Scholar 

  3. Dorfler P, Busslinger M . C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J 1996; 15: 1971–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cobaleda C, Schebesta A, Delogu A, Busslinger M . Pax5: the guardian of B cell identity and function. Nat Immunol 2007; 8: 463–470.

    Article  CAS  PubMed  Google Scholar 

  5. Nutt SL, Heavey B, Rolink AG, Busslinger M . Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 1999; 401: 556–562.

    Article  CAS  PubMed  Google Scholar 

  6. Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M . Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 2006; 24: 269–281.

    Article  CAS  PubMed  Google Scholar 

  7. Mikkola I, Heavey B, Horcher M, Busslinger M . Reversion of B cell commitment upon loss of Pax5 expression. Science 2002; 297: 110–113.

    Article  CAS  PubMed  Google Scholar 

  8. Schaniel C, Bruno L, Melchers F, Rolink AG . Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-B I-cell clones. Blood 2002; 99: 472–478.

    Article  CAS  PubMed  Google Scholar 

  9. Hoflinger S, Kesavan K, Fuxa M, Hutter C, Heavey B, Radtke F et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J Immunol 2004; 173: 3935–3944.

    Article  PubMed  Google Scholar 

  10. Morrison AM, Jager U, Chott A, Schebesta M, Haas OA, Busslinger M . Deregulated PAX-5 transcription from a translocated IgH promoter in marginal zone lymphoma. Blood 1998; 92: 3865–3878.

    CAS  PubMed  Google Scholar 

  11. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  12. Cobaleda C, Jochum W, Busslinger M . Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature 2007; 449: 473–477.

    Article  CAS  PubMed  Google Scholar 

  13. Vose JM . Mantle cell lymphoma: 2012 update on diagnosis, risk-stratification, and clinical management. Am J Hematol 2012; 87: 604–609.

    Article  PubMed  Google Scholar 

  14. Salaverria I, Perez-Galan P, Colomer D, Campo E . Mantle cell lymphoma: from pathology and molecular pathogenesis to new therapeutic perspectives. Haematologica 2006; 91: 11–16.

    CAS  PubMed  Google Scholar 

  15. Adams JM, Harris AW, Strasser A, Ogilvy S, Cory S . Transgenic models of lymphoid neoplasia and development of a pan-hematopoietic vector. Oncogene 1999; 18: 5268–5277.

    Article  CAS  PubMed  Google Scholar 

  16. Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM . Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. EMBO J 1994; 13: 2124–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kastan MB, Bartek J . Cell-cycle checkpoints and cancer. Nature 2004; 432: 316–323.

    Article  CAS  PubMed  Google Scholar 

  18. Malumbres M, Barbacid M . Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30: 630–641.

    Article  CAS  PubMed  Google Scholar 

  19. Massague J . G1 cell-cycle control and cancer. Nature 2004; 432: 298–306.

    Article  CAS  PubMed  Google Scholar 

  20. Chilosi M, Doglioni C, Magalini A, Inghirami G, Krampera M, Nadali G et al. p21/WAF1 cyclin-kinase inhibitor expression in non-Hodgkin’s lymphomas: a potential marker of p53 tumor-suppressor gene function. Blood 1996; 88: 4012–4020.

    CAS  PubMed  Google Scholar 

  21. Sanchez-Beato M, Sanchez-Aguilera A, Piris MA . Cell cycle deregulation in B-cell lymphomas. Blood 2003; 101: 1220–1235.

    Article  CAS  PubMed  Google Scholar 

  22. Ding BC, Whetstine JR, Witt TL, Schuetz JD, Matherly LH . Repression of human reduced folate carrier gene expression by wild type p53. J Biol Chem 2001; 276: 8713–8719.

    Article  CAS  PubMed  Google Scholar 

  23. Drakos E, Atsaves V, Li J, Leventaki V, Andreeff M, Medeiros LJ et al. Stabilization and activation of p53 downregulates mTOR signaling through AMPK in mantle cell lymphoma. Leukemia 2009; 23: 784–790.

    Article  CAS  PubMed  Google Scholar 

  24. Pridans C, Holmes ML, Polli M, Wettenhall JM, Dakic A, Corcoran LM et al. Identification of Pax5 target genes in early B cell differentiation. J Immunol 2008; 180: 1719–1728.

    Article  CAS  PubMed  Google Scholar 

  25. Matsui W, Huff CA, Wang Q, Malehorn MT, Barber J, Tanhehco Y et al. Characterization of clonogenic multiple myeloma cells. Blood 2004; 103: 2332–2336.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z, Orlowski RZ, Wang M, Kwak L, McCarty N . Osteoblastic niche supports the growth of quiescent multiple myeloma cells. Blood 2014; 123: 2204–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carlo-Stella C, Locatelli SL, Giacomini A, Cleris L, Saba E, Righi M et al. Sorafenib inhibits lymphoma xenografts by targeting MAPK/ERK and AKT pathways in tumor and vascular cells. PLoS One 2013; 8: e61603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dal Col J, Zancai P, Terrin L, Guidoboni M, Ponzoni M, Pavan A et al. Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 2008; 111: 5142–5151.

    Article  CAS  PubMed  Google Scholar 

  29. Dennison JB, Shanmugam M, Ayres ML, Qian J, Krett NL, Medeiros LJ et al. 8-Aminoadenosine inhibits Akt/mTOR and Erk signaling in mantle cell lymphoma. Blood 2010; 116: 5622–5630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Psyrri A, Papageorgiou S, Liakata E, Scorilas A, Rontogianni D, Kontos CK et al. Phosphatidylinositol 3'-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res 2009; 15: 5724–5732.

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Atayar C, Rosati S, Bosga-Bouwer A, Kluin P, Visser L . JNK is constitutively active in mantle cell lymphoma: cell cycle deregulation and polyploidy by JNK inhibitor SP600125. J Pathol 2009; 218: 95–103.

    Article  CAS  PubMed  Google Scholar 

  32. Kolch W . Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005; 6: 827–837.

    Article  CAS  PubMed  Google Scholar 

  33. Cooper AB, Sawai CM, Sicinska E, Powers SE, Sicinski P, Clark MR et al. A unique function for cyclin D3 in early B cell development. Nat Immunol 2006; 7: 489–497.

    Article  CAS  PubMed  Google Scholar 

  34. Nagel S, Scherr M, Quentmeier H, Kaufmann M, Zaborski M, Drexler HG et al. HLXB9 activates IL6 in Hodgkin lymphoma cell lines and is regulated by PI3K signalling involving E2F3. Leukemia 2005; 19: 841–846.

    Article  CAS  PubMed  Google Scholar 

  35. Patil C, Zhu X, Rossa C Jr., Kim YJ, Kirkwood KL . p38 MAPK regulates IL-1beta induced IL-6 expression through mRNA stability in osteoblasts. Immunol Invest 2004; 33: 213–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang L, Yang J, Qian J, Li H, Romaguera JE, Kwak LW et al. Role of the microenvironment in mantle cell lymphoma: IL-6 is an important survival factor for the tumor cells. Blood 2012; 120: 3783–3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Graf L, Iwata M, Torok-Storb B . Gene expression profiling of the functionally distinct human bone marrow stromal cell lines HS-5 and HS-27a. Blood 2002; 100: 1509–1511.

    Article  CAS  PubMed  Google Scholar 

  38. Karpinich NO, Tafani M, Rothman RJ, Russo MA, Farber JL . The course of etoposide- induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem 2002; 277: 16547–16552.

    Article  CAS  PubMed  Google Scholar 

  39. Manna SK, Gangadharan C, Edupalli D, Raviprakash N, Navneetha T, Mahali S et al. Ras puts the brake on doxorubicin-mediated cell death in p53-expressing cells. J Biol Chem 2011; 286: 7339–7347.

    Article  CAS  PubMed  Google Scholar 

  40. Suh KS, Goy A . Bortezomib in mantle cell lymphoma. Future Oncol 2008; 4: 149–168.

    Article  CAS  PubMed  Google Scholar 

  41. Perez-Galan P, Mora-Jensen H, Weniger MA, Shaffer AL 3rd, Rizzatti EG, Chapman CM et al. Bortezomib resistance in mantle cell lymphoma is associated with plasmacytic differentiation. Blood 2011; 117: 542–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Argatoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD . Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood 1997; 89: 2067–2078.

    CAS  PubMed  Google Scholar 

  43. Bernard M, Gressin R, Lefrere F, Drenou B, Branger B, Caulet-Maugendre S et al. Blastic variant of mantle cell lymphoma: a rare but highly aggressive subtype. Leukemia 2001; 15: 1785–1791.

    Article  CAS  PubMed  Google Scholar 

  44. Bosch F, Lopez-Guillermo A, Campo E, Ribera JM, Conde E, Piris MA et al. Mantle cell lymphoma: presenting features, response to therapy, and prognostic factors. Cancer 1998; 82: 567–575.

    Article  CAS  PubMed  Google Scholar 

  45. Iversen PW, Beck B, Chen YF, Dere W, Devanarayan V, Eastwood BJ et al In: Sittampalam GS, Gal-Edd N, Arkin M, Auld D, Austin C, Bejcek B et al (eds). HTS Assay Validation. Assay Guidance Manual: : Bethesda, MD, 2004.

    Google Scholar 

  46. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–197.

    Article  CAS  PubMed  Google Scholar 

  47. Laimer D, Dolznig H, Kollmann K, Vesely PW, Schlederer M, Merkel O et al. PDGFR blockade is a rational and effective therapy for NPM-ALK-driven lymphomas. Nat Med 2012; 18: 1699–1704.

    Article  CAS  PubMed  Google Scholar 

  48. Colomiere M, Ward AC, Riley C, Trenerry MK, Cameron-Smith D, Findlay J et al. Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial- mesenchymal transition in ovarian carcinomas. Br J Cancer 2009; 100: 134–144.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, van Boxel-Dezaire AH, Cheon H, Yang J, Stark GR . STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci USA 2013; 110: 16975–16980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu E, Palmer N, Tian Z, Moseman AP, Galdzicki M, Wang X et al. Comprehensive dissection of PDGF-PDGFR signaling pathways in PDGFR genetically defined cells. PLoS One 2008; 3: e3794.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hodge DR, Peng B, Cherry JC, Hurt EM, Fox SD, Kelley JA et al. Interleukin 6 supports the maintenance of p53 tumor suppressor gene promoter methylation. Cancer Res 2005; 65: 4673–4682.

    Article  CAS  PubMed  Google Scholar 

  52. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N McCarty.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, A., Chen, Z., Miranda, R. et al. Differential PAX5 levels promote malignant B-cell infiltration, progression and drug resistance, and predict a poor prognosis in MCL patients independent of CCND1. Leukemia 30, 580–593 (2016). https://doi.org/10.1038/leu.2015.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.140

This article is cited by

Search

Quick links