Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation

Abstract

The t(6;9)-positive acute myeloid leukemia (AML) is classified as a separate clinical entity because of its early onset and poor prognosis. The hallmark of t(6;9) AML is the expression of the DEK/CAN fusion protein. The leukemogenic potential of DEK/CAN has been called into question, because it was shown to be unable to block the differentiation of hematopoietic progenitors. We found that DEK/CAN initiated leukemia from a small subpopulation within the hematopoietic stem cell (HSC) population expressing a surface marker pattern of long-term (LT) HSC. The propagation of established DEK/CAN-positive leukemia was not restricted to the LT-HSC population, but occurred even from more mature and heterogeneous cell populations. This finding indicates that in DEK/CAN-induced leukemia, there is a difference between ‘leukemia-initiating cells’ (L-ICs) and ‘leukemia-maintaining cells’ (L-MCs). In contrast to the L-IC cells represented by a very rare subpopulation of LT-HSC, the L-MC seem to be represented by a larger and phenotypically heterogeneous cell population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Passegué E, Jamieson CHM, Ailles LE, Weissman IL . Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003; 100: 11842–11849.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  3. Puccetti E, Obradovic D, Beissert T, Bianchini A, Washburn B, Chiaradonna F et al. AML-associated translocation products block vitamin D(3)-induced differentiation by sequestering the vitamin D(3) receptor. Cancer Res 2002; 62: 7050–7058.

    CAS  PubMed  Google Scholar 

  4. Yan M, Kanbe E, Peterson LF, Boyapati A, Miao Y, Wang Y et al. A previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesis. Nat Med 2006; 12: 945–949.

    Article  CAS  PubMed  Google Scholar 

  5. Zheng X, Beissert T, Kukoc-Zivojnov N, Puccetti E, Altschmied J, Strolz C et al. Gamma-catenin contributes to leukemogenesis induced by AML-associated translocation products by increasing the self-renewal of very primitive progenitor cells. Blood 2004; 103: 3535–3543.

    Article  CAS  PubMed  Google Scholar 

  6. Shearer BM, Knudson RA, Flynn HC, Ketterling RP . Development of a D-FISH method to detect DEK/CAN fusion resulting from t(6;9)(p23;q34) in patients with acute myelogenous leukemia. Leukemia 2005; 19: 126–131.

    Article  CAS  PubMed  Google Scholar 

  7. Soekarman D, von Lindern M, van der Plas SDC, Selleri L, Bartram C, Martiat P et al. Dek-can rearrangment in translocation (6;9)(p23;q34). Leukemia 1992; 6: 489–494.

    CAS  PubMed  Google Scholar 

  8. Chi Y, Lindgren V, Quigley S, Gaitonde S . Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia: an overview. Arch Pathol Lab Med 2008; 132: 1835–1837.

    PubMed  Google Scholar 

  9. Garçon L, Libura M, Delabesse E, Valensi F, Asnafi V, Berger C et al. DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification. Leukemia 2005; 19: 1338–1344.

    Article  PubMed  Google Scholar 

  10. von Lindern M, Fornerod M, van Baal S, Jaegle M, de Wit T, Buijs A et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 1992; 12: 1687–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oyarzo MP, Lin P, Glassman A, Bueso-Ramos CE, Luthra R, Medeiros LJ . Acute myeloid leukemia with t(6;9)(p23;q34) is associated with dysplasia and a high frequency of flt3 gene mutations. Am J Clin Pathol 2004; 122: 348–358.

    Article  CAS  PubMed  Google Scholar 

  12. Hollenbach AD, McPherson CJ, Mientjes EJ, Iyengar R, Grosveld G . Daxx and histone deacetylase II associate with chromatin through an interaction with core histones and the chromatin-associated protein Dek. J Cell Sci 2002; 115: 3319–3330.

    CAS  PubMed  Google Scholar 

  13. Ko SI, Lee IS, Kim JY, Kim SM, Kim DW, Lee KS et al. Regulation of histone acetyltransferase activity of p300 and PCAF by proto-oncogene protein DEK. FEBS Lett 2006; 580: 3217–3222.

    Article  CAS  PubMed  Google Scholar 

  14. Kappes F, Scholten I, Richter N, Gruss C, Waldmann T . Functional domains of the ubiquitous chromatin protein DEK. Mol Cell Biol 2004; 24: 6000–6010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Waldmann T, Eckerich C, Baack M, Gruss C . The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J Biol Chem 2002; 277: 24988–24994.

    Article  CAS  PubMed  Google Scholar 

  16. Wise-Draper TM, Allen HV, Thobe MN, Jones EE, Habash KB, Münger K et al. The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol 2005; 79: 14309–14317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fornerod M, van Deursen J, van Baal S, Reynolds A, Davis D, Murti KG et al. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 1997; 16: 807–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Boer J, Bonten-Surtel J, Grosveld G . Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Mol Cell Biol. 1998; 18: 1236–1247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ageberg M, Gullberg U, Lindmark A . The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK. Haematologica 2006; 91: 268–269.

    CAS  PubMed  Google Scholar 

  20. Beissert T, Hundertmark A, Kaburova V, Travaglini L, Mian AA, Nervi C et al. Targeting of the N-terminal coiled coil oligomerization interface by a helix-2 peptide inhibits unmutated and imatinib-resistant BCR/ABL. Int J Cancer 2008; 122: 2744–2752.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng X, Seshire A, Rüster B, Bug G, Beissert T, Puccetti E . Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positive leukemic stem cells. Haematologica 2007; 92: 323–331.

    Article  CAS  PubMed  Google Scholar 

  22. Bug G, Gül H, Schwarz K, Pfeifer H, Kampfmann M, Zheng X et al. Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res 2005; 65: 2537–2541.

    Article  CAS  PubMed  Google Scholar 

  23. Huntly BJP, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587–596.

    Article  CAS  PubMed  Google Scholar 

  24. Coulombel L . Identification of hematopoietic stem/progenitor cells: strength and drawbacks of functional assays. Oncogene 2004; 23: 7210–7222.

    Article  CAS  PubMed  Google Scholar 

  25. Deshpande AJ, Cusan M, Rawat VPS, Reuter H, Krause A, Pott C et al. Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell 2006; 10: 363–374.

    Article  CAS  PubMed  Google Scholar 

  26. Viale A, Franco FD, Orleth A, Cambiaghi V, Giuliani V, Bossi D et al. Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells. Nature 2009; 457: 51–56.

    Article  CAS  PubMed  Google Scholar 

  27. Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Ruscio AD et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood 2009; 114: 5415–5425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A et al. PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia 2009; 23: 1462–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang JC, Dick JE . Cancer stem cells: lessons from leukemia. Trends Cell Biol 2005; 15: 494–501.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from Deutsche Krebshilfe e.V. to Martin Ruthardt (107741). MR is further funded by grants from German José Carreras Leukemia-Foundation (together with RH—DJCLS—R 07/27f), Deutsche Forschungsgemeinschaft (DFG-RU 728/3-2) and Alfred and Angelika Gutermuth Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Ruthardt.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oancea, C., Rüster, B., Henschler, R. et al. The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 24, 1910–1919 (2010). https://doi.org/10.1038/leu.2010.180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.180

Keywords

This article is cited by

Search

Quick links