Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

MicroRNA therapeutics

Abstract

MicroRNAs (miRNAs) provide new therapeutic targets for many diseases, while their myriad roles in development and cellular processes make them fascinating to study. We still do not fully understand the molecular mechanisms by which miRNAs regulate gene expression nor do we know the complete repertoire of mRNAs each miRNA regulates. However, recent progress in the development of effective strategies to block miRNAs suggests that anti-miRNA drugs may soon be used in the clinic.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  2. Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev 2010; 24: 992–1009.

    Article  CAS  Google Scholar 

  3. Medina PP, Slack FJ . microRNAs and cancer: an overview. Cell Cycle 2008; 7: 2485–2492.

    Article  CAS  Google Scholar 

  4. Petrocca F, Lieberman J . Micromanipulating cancer: microRNA-based therapeutics? RNA Biol 2009; 6: 335–340.

    Article  CAS  Google Scholar 

  5. Mencía A, Modamio-Høybjør S, Redshaw N, Morín M, Mayo-Merino F, Olavarrieta L et al. Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet 2009; 41: 609–613.

    Article  Google Scholar 

  6. Lewis MA, Quint E, Glazier AM, Fuchs H, De Angelis MH, Langford C et al. An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice. Nat Genet 2009; 41: 614–618.

    Article  CAS  Google Scholar 

  7. Jopling CL, Schutz S, Sarnow P . Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 2008; 4: 77–85.

    Article  CAS  Google Scholar 

  8. Umbach JL, Cullen BR . The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev 2009; 23: 1151–1164.

    Article  CAS  Google Scholar 

  9. Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840.

    Article  CAS  Google Scholar 

  10. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  Google Scholar 

  11. Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    Article  CAS  Google Scholar 

  12. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  Google Scholar 

  13. Lewis BP, Burge CB, Bartel DP . Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.

    Article  CAS  Google Scholar 

  14. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  Google Scholar 

  15. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP . MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007; 27: 91–105.

    Article  CAS  Google Scholar 

  16. Rajewsky N, Socci ND . Computational identification of microRNA targets. Dev Biol 2004; 267: 529–535.

    Article  CAS  Google Scholar 

  17. Cullen BR . Viral and cellular messenger RNA targets of viral microRNAs. Nature 2009; 457: 421–425.

    Article  CAS  Google Scholar 

  18. Cullen BR . Five questions about viruses and microRNAs. PLoS Pathog 2010; 6: e1000787.

    Article  Google Scholar 

  19. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M et al. Host immune system gene targeting by a viral miRNA. Science 2007; 317: 376–381.

    Article  CAS  Google Scholar 

  20. Nachmani D, Lankry D, Wolf DG, Mandelboim O . The human cytomegalovirus microRNA miR-UL112 acts synergistically with a cellular microRNA to escape immune elimination. Nat Immunol 2010; 11: 806–813.

    Article  CAS  Google Scholar 

  21. Murphy E, Vanicek J, Robins H, Shenk T, Levine AJ . Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: implications for latency. Proc Natl Acad Sci USA 2008; 105: 5453–5458.

    Article  CAS  Google Scholar 

  22. Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR . MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008; 454: 780–783.

    Article  CAS  Google Scholar 

  23. Bellare P, Ganem D . Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe 2009; 6: 570–575.

    Article  CAS  Google Scholar 

  24. Ellis-Connell AL, Iempridee T, Xu I, Mertz JE . Cellular microRNAs 200b and 429 regulate the Epstein-Barr virus switch between latency and lytic replication. J Virol 2010; 84: 10329–10343.

    Article  CAS  Google Scholar 

  25. Johnson CD, Esquela-Kerscher A, Stefani G, Byrom M, Kelnar K, Ovcharenko D et al. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 2007; 67: 7713–7722.

    Article  CAS  Google Scholar 

  26. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L et al. The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 2008; 7: 759–764.

    Article  CAS  Google Scholar 

  27. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA 2008; 105: 3903–3908.

    Article  CAS  Google Scholar 

  28. Trang P, Medina PP, Wiggins JF, Ruffino L, Kelnar K, Omotola M et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene 2010; 29: 1580–1587.

    Article  CAS  Google Scholar 

  29. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  Google Scholar 

  30. Gabriely G, Wurdinger T, Kesari S, Esau CC, Burchard J, Linsley PS et al. MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol 2008; 28: 5369–5380.

    Article  CAS  Google Scholar 

  31. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 2010; 16: 909–914.

    Article  CAS  Google Scholar 

  32. Medina PP, Nolde M, Slack FJ . OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.

    Article  CAS  Google Scholar 

  33. Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 2010; 328: 1534–1539.

    Article  CAS  Google Scholar 

  34. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010; 464: 1067–1070.

    Article  CAS  Google Scholar 

  35. Lennox KA, Behlke MA . A direct comparison of anti-microRNA oligonucleotide potency. Pharm Res 2010; 27: 1788–1799.

    Article  CAS  Google Scholar 

  36. Zheng G, Ambros V, Li WH . Inhibiting miRNA in Caenorhabditis elegans using a potent and selective antisense reagent. Silence 2010; 1: 9.

    Article  Google Scholar 

  37. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005; 438: 685–689.

    Article  Google Scholar 

  38. Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T et al. Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res 2007; 35: 2885–2892.

    Article  Google Scholar 

  39. Davis S, Lollo B, Freier S, Esau C . Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006; 34: 2294–2304.

    Article  CAS  Google Scholar 

  40. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006; 3: 87–98.

    Article  CAS  Google Scholar 

  41. Ørom UA, Kauppinen S, Lund AH . LNA-modified oligonucleotides mediate specific inhibition of microRNA function. Gene 2006; 372: 137–141.

    Article  Google Scholar 

  42. Elmén J, Lindow M, Schütz S, Lawrence M, Petri A, Obad S et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008; 452: 896–899.

    Article  Google Scholar 

  43. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow M, Munk ME et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327: 198–201.

    Article  CAS  Google Scholar 

  44. Semple SC, Akinc A, Chen J, Sandhu AP, Mui BL, Cho CK et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol 2010; 28: 172–176.

    Article  CAS  Google Scholar 

  45. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA 2010; 107: 1864–1869.

    Article  CAS  Google Scholar 

  46. Ebert MS, Neilson JR, Sharp PA . MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 2007; 4: 721–726.

    Article  CAS  Google Scholar 

  47. Loya CM, Lu CS, Van Vactor D, Fulga TA . Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 2009; 6: 897–903.

    Article  CAS  Google Scholar 

  48. Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D . A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet 2010; 6: e1001031.

    Article  Google Scholar 

  49. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med 2007; 13: 613–618.

    Article  Google Scholar 

  50. Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 2007; 39: 1033–1037.

    Article  CAS  Google Scholar 

  51. Haraguchi T, Ozaki Y, Iba H . Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res 2009; 37: e43.

    Article  Google Scholar 

  52. Sauer B, Henderson N . Cre-stimulated recombination at loxP-containing DNA sequences placed into the mammalian genome. Nucleic Acids Res 1989; 17: 147–161.

    Article  CAS  Google Scholar 

  53. Stern P, Astrof S, Erkeland SJ, Schustak J, Sharp PA, Hynes RO . A system for Cre-regulated RNA interference in vivo. Proc Natl Acad Sci USA 2008; 105: 13895–13900.

    Article  CAS  Google Scholar 

  54. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109–1123.

    Article  CAS  Google Scholar 

  55. Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008; 14: 1271–1277.

    Article  CAS  Google Scholar 

  56. Grimm D, Wang L, Lee JS, Schürmann N, Gu S, Börner K et al. Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 2010; 120: 3106–3119.

    Article  CAS  Google Scholar 

  57. Diederichs S, Jung S, Rothenberg SM, Smolen GA, Mlody BG, Haber DA . Coexpression of Argonaute-2 enhances RNA interference toward perfect match binding sites. Proc Natl Acad Sci USA 2008; 105: 9284–9289.

    Article  CAS  Google Scholar 

  58. McBride JL, Boudreau RL, Harper SQ, Staber PD, Monteys AM, Martins I et al. Artificial miRNAs mitigate shRNA-mediated toxicity in the brain: implications for the therapeutic development of RNAi. Proc Natl Acad Sci USA 2008; 105: 5868–5873.

    Article  CAS  Google Scholar 

  59. Boudreau RL, Monteys AM, Davidson BL . Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA 2008; 14: 1834–1844.

    Article  CAS  Google Scholar 

  60. Boudreau RL, Martins I, Davidson BL . Artificial microRNAs as siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol Ther 2009; 17: 169–175.

    Article  CAS  Google Scholar 

  61. Beer S, Bellovin DI, Lee JS, Komatsubara K, Wang LS, Koh H et al. Low-level shRNA cytotoxicity can contribute to MYC-induced hepatocellular carcinoma in adult mice. Mol Ther 2010; 18: 161–170.

    Article  CAS  Google Scholar 

  62. Bauer M, Kinkl N, Meixner A, Kremmer E, Riemenschneider M, Förstl H et al. Prevention of interferon-stimulated gene expression using microRNA-designed hairpins. Gene Therapy 2009; 16: 142–147.

    Article  CAS  Google Scholar 

  63. Colin A, Faideau M, Dufour N, Auregan G, Hassig R, Andrieu T et al. Engineered lentiviral vector targeting astrocytes in vivo. Glia 2009; 57: 667–679.

    Article  Google Scholar 

  64. Annoni A, Brown BD, Cantore A, Sergi LS, Naldini L, Roncarolo MG . In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance. Blood 2009; 114: 5152–5161.

    Article  CAS  Google Scholar 

  65. Leja J, Dzojic H, Gustafson E, Oberg K, Giandomenico V, Essand M . A novel chromogranin-A promoter-driven oncolytic adenovirus for midgut carcinoid therapy. Clin Cancer Res 2007; 13: 2455–2462.

    Article  CAS  Google Scholar 

  66. Leja J, Nilsson B, Yu D, Gustafson E, Akerström G, Oberg K et al. Double-detargeted oncolytic adenovirus shows replication arrest in liver cells and retains neuroendocrine cell killing ability. PLoS One 2010; 5: e8916.

    Article  Google Scholar 

  67. Brown BD, Gentner B, Cantore A, Colleoni S, Amendola M, Zingale A et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007; 25: 1457–1467.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P D Zamore.

Ethics declarations

Competing interests

PDZ is a member of the scientific advisory board of Regulus Therapeutics, LLC, a microRNA therapeutics company. JAB declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broderick, J., Zamore, P. MicroRNA therapeutics. Gene Ther 18, 1104–1110 (2011). https://doi.org/10.1038/gt.2011.50

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.50

Keywords

This article is cited by

Search

Quick links