Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Dendritic cells: On the move from bench to bedside

Abstract

As dendritic cells increasingly become the adjuvant of choice in new approaches to cancer immunotherapy, a degree of protocol standardization is required to aid future large-scale clinical trials.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Stephen Horwitz

Figure 2: Rationale for dendritic-cell tumor immunotherapy.

Stephen Horwitz

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  2. Lotze, M.T., Shurin, M., Davis, I., Amoscato, A. & Storkus, W.J. Dendritic cell based therapy of cancer. Adv. Exp. Med. Biol. 417, 551–569 (1997).

    Article  CAS  Google Scholar 

  3. Clark, G.J. & Hart, D.N.J. Phenotypic characterization of dendritic cells. in Dendritic Cells: Biology and Clinical Applications (ed. Lotze, M.T.) 555–557 (Academic, London, 1998).

    Google Scholar 

  4. Gilboa, E., Nair, S.K. & Lyerly, H.K. Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol. Immunother. 46, 82–87 (1998).

    Article  CAS  Google Scholar 

  5. Young, J.W. & Inaba, K. Dendritic cells as adjuvants for class I major histocompatibility complex-restricted antitumor immunity. J. Exp.Med. 183, 7–11 (1996).

    Article  CAS  Google Scholar 

  6. Timmerman, J.M. & Levy, R. Dendritic cell vaccines for cancer immunotherapy. Annu. Rev. Med. 50, 507–529 (1999).

    Article  CAS  Google Scholar 

  7. Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 4, 328–332 (1998).

    Article  CAS  Google Scholar 

  8. Thurner, B. et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J. Exp. Med. 190, 1669–1678 (1999).

    Article  CAS  Google Scholar 

  9. Fong, L. & Engleman, E.G. Dendritic cells in cancer immunotherapy. Annu. Rev. Immunol. 18, 245–273 (2000).

    Article  CAS  Google Scholar 

  10. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony- stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor-α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  Google Scholar 

  11. Romani, N. et al. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 180, 83–93 (1994).

    Article  CAS  Google Scholar 

  12. Randolph, G.J., Inaba, K., Robbiani, D.F., Steinman, R.M. & Muller, W.A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–7561 (1999).

    Article  CAS  Google Scholar 

  13. Banchereau, J., Pulendran, B., Steinman, R. & Palucka, K. Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries? J. Exp. Med. 192 (2000).

  14. Hart, D.N.J. et al. 7th leucocyte differentiation antigen workshop dendritic cells section summary. in Leucocyte Typing Vol. VII (ed. Mason, D.) (Oxford University Press, Oxford, 2000).

    Google Scholar 

  15. Schuler, G. & Steinman, R.M. Murine epidermal Langerhans cells mature into potent allostimulatory dendritic cells in vitro. J. Exp. Med. 161, 526–546 (1985).

    Article  CAS  Google Scholar 

  16. Dhodapkar, M.V. et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J. Clin. Invest. 104, 173–180. (1999).

    Article  CAS  Google Scholar 

  17. Lodge, P.A., Jones, L.A., Bader, R.A., Murphy, G.P. & Salgaller, M.L. Dendritic cell-based immunotherapy of prostate cancer: immune monitoring of a phase II clinical trial. Cancer Res. 60, 829–833. (2000).

    CAS  PubMed  Google Scholar 

  18. Murphy, G.P. et al. Infusion of dendritic cells pulsed with HLA-A2-specific prostate-specific membrane antigen peptides: A phase 2 prostate cancer vaccine trial involving patients with hormone-refractory metastatic disease. Prostate. 38, 73–78 (1999).

    Article  CAS  Google Scholar 

  19. Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med. 2, 52–57 (1996).

    Article  CAS  Google Scholar 

  20. Dhodapkar, M.V., Steinman, R.M., Krasovsky, J., Munz, M. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    Article  CAS  Google Scholar 

  21. Toes, R.E. et al. Enhancement of tumor outgrowth through CTL tolerization after peptide vaccination is avoided by peptide presentation on dendritic cells. J. Immunol. 160, 4449–4456 (1998).

    CAS  PubMed  Google Scholar 

  22. Small, E.J. et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J. Clin. Oncol. 18, 3894–3903 (2000).

    Article  CAS  Google Scholar 

  23. Binder, R.J., Han, D.K. & Srivastava, P.K. CD91: a receptor for heat shock protein gp96. Nature Immunol. 1, 151–155 (2000).

    Article  CAS  Google Scholar 

  24. Kugler, A. et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nature Med. 6, 332–336 (2000).

    Article  CAS  Google Scholar 

  25. Boczkowski, D., Nair, S.K., Nam, J.H., Lyerly, H.K. & Gilboa, E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 60, 1028–1034 (2000).

    CAS  PubMed  Google Scholar 

  26. Vonderheide, R.H., Hahn, W.C., Schultze, J.L. & Nadler, L.M. The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10, 673–679 (1999).

    Article  CAS  Google Scholar 

  27. Dhodapkar, M.V., Krasovsky, J., Steinman, R.M. & Bhardwaj, N. Mature dendritic cells boost functionally superior CD8(+) T-cell in humans without foreign helper epitopes. J. Clin. Invest. 105, R9–R14 (2000).

    Article  CAS  Google Scholar 

  28. Eggert, A. et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res. 59, 3340–3345 (1999).

    CAS  PubMed  Google Scholar 

  29. Barratt-Boyes, S.M. et al. Maturation and trafficking of monocyte-derived dendritic cells in monkeys: implications for dendritic cell-based vaccines. J. Immunol. 164, 2487–2495 (2000).

    Article  CAS  Google Scholar 

  30. Thomas, R. et al. Immature human monocyte-derived dendritic cells migrate rapidly to draining lymph nodes after intradermal injection for melanoma immunotherapy. Melanoma Res. 9, 474–481 (1999).

    Article  CAS  Google Scholar 

  31. Morse, M.A. et al. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res. 59, 56–58 (1999).

    CAS  PubMed  Google Scholar 

  32. Fong, L., Brockstedt, D., Benike, C., Wu, L. & Engleman, E.G. Dendritic cells injected via different routes induce immunity in cancer patients. J. Immunol. 166, 4254–4259. (2001).

    Article  CAS  Google Scholar 

  33. Serody, J.S., Collins, E.J., Tisch, R.M., Kuhns, J.J. & Frelinger, J.A. T cell activity after dendritic cell vaccination is dependent on both the type of antigen and the mode of delivery. J Immunol. 164, 4961–4967 (2000).

    Article  CAS  Google Scholar 

  34. Morse, M. et al. A phase 1 study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin. Cancer Res. 5, 1331–1338 (1999).

    CAS  PubMed  Google Scholar 

  35. Feuerstein, B. et al. A method for the production of cryopreserved aliquots of antigen- preloaded, mature dendritic cells ready for clinical use. J. Immunol. Meth. 245, 15–29 (2000).

    Article  CAS  Google Scholar 

  36. Ludewig, B. et al. Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J. Exp. Med. 191, 795–803 (2000).

    Article  CAS  Google Scholar 

  37. Heiser, A. et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-Cell responses against antigens expressed by primary and metastatic tumors. Cancer Res. 61, 3388–3393 (2001).

    CAS  PubMed  Google Scholar 

  38. Mackensen, A., Drager, R., Schlesier, M., Mertelsmann, R. & Lindemann, A. Presence of IgE antibodies to bovine serum albumin in a patient developing anaphylaxis after vaccination with human peptide-pulsed dendritic cells. Cancer Immunol. Immunother. 49, 152–156 (2000).

    Article  CAS  Google Scholar 

  39. McGuckin, M.A., MacDonald, K.P.A., Tran, M., Wykes, M. & Hart, D.N.J. MUC1 epithelial mucin—expression by normal haematopoietic cells. in Leucocyte Typing, Vol. VII (ed. Mason, D.) (Oxford University Press, Oxford, 2000).

    Google Scholar 

  40. Romero, P., Cerottini, J.C. & Waanders, G.A. Novel methods to monitor antigen-specific cytotoxic T-cell responses in cancer immunotherapy. Mol. Med. Today 4, 305–312 (1998).

    Article  CAS  Google Scholar 

  41. Kammula, U.S., Marincola, F.M. & Rosenberg, S.A. Real-time quantitative polymerase chain reaction assessment of immune reactivity in melanoma patients after tumor peptide vaccination. J. Natl. Cancer Inst. 92, 1336–1344 (2000).

    Article  CAS  Google Scholar 

  42. Panelli, M.C. et al. Expansion of tumor-T cell pairs from fine needle aspirates of melanoma metastases. J. Immunol. 164, 495–504 (2000).

    Article  CAS  Google Scholar 

  43. Marincola, F.M., Jaffee, E.M., Hicklin, D.J. & Ferrone, S. Escape of human solid tumors from T-cell recognition: Molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    Article  CAS  Google Scholar 

  44. Hart, D.N.J. & Hill, G.R. Dendritic cell immunotherapy for cancer: application to low-grade lymphoma and multiple myeloma. Immunol. Cell Biol. 77, 451–459 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many of the ideas mentioned in this manuscript originate from discussions during the Expert Meeting on Dendritic Cell Clinical Trials in Zurich and the Second Annual MMRI Symposium on 'Clinical Dendritic Cell Cancer Therapy', in Brisbane, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Hart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestle, F., Banchereau, J. & Hart, D. Dendritic cells: On the move from bench to bedside. Nat Med 7, 761–765 (2001). https://doi.org/10.1038/89863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/89863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing