Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis

Abstract

Juvenile polyposis (JP; OMIM 174900) is an autosomal dominant gastrointestinal hamartomatous polyposis syndrome in which patients are at risk for developing gastrointestinal cancers1,2. Previous studies have demonstrated a locus for JP mapping to 18q21.1 (ref. 3) and germline mutations in the homolog of the gene for mothers against decapentaplegic, Drosophila, (MADH4, also known as SMAD4) in several JP families4. However, mutations in MADH4 are only present in a subset of JP cases5, and although mutations in the gene for phosphatase and tensin homolog (PTEN) have been described in a few families6,7, undefined genetic heterogeneity remains. Using a genome-wide screen in four JP kindreds without germline mutations in MADH4 or PTEN, we identified linkage with markers from chromosome 10q22–23 (maximum lod score of 4.74, θ=0.00). We found no recombinants using markers developed from the vicinity of the gene for bone morphogenetic protein receptor 1A (BMPR1A), a serine–threonine kinase type I receptor involved in bone morphogenetic protein (BMP) signaling8. Genomic sequencing of BMPR1A in each of these JP kindreds disclosed germline nonsense mutations in all affected kindred members but not in normal control individuals. These findings indicate involvement of an additional gene in the transforming growth factor-β (TGF-β) superfamily in the genesis of JP, and document an unanticipated function for BMP in colonic epithelial growth control.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BMPR1A sequence variants in four JP kindreds.
Figure 2: Mutation testing in four JP kindreds.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Jarvinen, H.J. & Franssila, K.O. Familial juvenile polyposis coli: Increased risk of colorectal cancer. Gut 25, 792–800 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Howe, J.R., Mitros, F.A. & Summers, R.W. The risk of gastrointestinal carcinoma in familial juvenile polyposis. Ann. Surg. Onc. 5, 751–756 (1998).

    Article  CAS  Google Scholar 

  3. Howe, J.R. et al. A gene for familial juvenile polyposis maps to chromosome 18q21.1. Am. J. Hum. Genet. 62, 1129–1136 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Howe, J.R. et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280, 1086–1088 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Houlston, R. et al. Mutations in DPC4 (SMAD4) cause juvenile polyposis syndrome, but only account for a minority of cases. Hum. Mol. Genet. 7, 1907–1912 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Olschwang, S., Serova-Sinilnikova, O.M., Lenoir, G.M. & Thomas, G. PTEN germ-line mutations in juvenile polyposis coli. Nature Genet. 18, 12–14 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Lynch, E.D. et al. Inherited mutations in PTEN that are associated with breast cancer, Cowden disease, and juvenile polyposis. Am. J. Hum. Genet. 61, 1254–1260 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. ten Dijke, P. et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene 8, 2879–2887 (1993).

    CAS  PubMed  Google Scholar 

  9. Nelen, M.R. et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nature Genet. 13, 114–116 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Jacoby, R.F. et al. A juvenile polyposis tumor suppressor locus at 10q22 is deleted from nonepithelial cells in the lamina propria. Gastroenterology 112, 1398–1403 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massague, J. The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984–995 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Henningfeld, K.A., Rastegar, S., Adler, G. & Knochel, W. Smad1 and Smad4 are components of the bone morphogenetic protein-4 (BMP-4)-induced transcription complex of the Xvent-2B promoter. J. Biol. Chem. 275, 21827–21835 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Gentry, W.C., Jr., Eskritt, N.R. & Gorlin, R.J. Multiple hamartoma syndrome (Cowden disease). Arch. Dermatol. 109, 521–525 (1974).

    Article  PubMed  Google Scholar 

  15. Eng, C. & Ji, H. Molecular classification of the inherited hamartoma polyposis syndromes: Clearing the muddied waters. Am. J. Hum. Genet. 62, 1020–1022 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Woodford-Richens, K. et al. Allelic loss at SMAD4 in polyps from juvenile polyposis patients and use of fluorescence in situ hybridization to demonstrate clonal origin of the epithelium. Cancer Res. 60, 2477–2482 (2000).

    CAS  PubMed  Google Scholar 

  17. Dai, J.L., Bansal, R.K. & Kern, S.E. G1 cell cycle arrest and apoptosis induction by nuclear Smad4/Dpc4: phenotypes reversed by a tumorigenic mutation. Proc. Natl. Acad. Sci. USA 96, 1427–1432 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sirard, C. et al. Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor beta-related signaling. J. Biol. Chem. 275, 2063–2070 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Fink, S.P. et al. Transforming growth factor-beta-induced growth inhibition in a smad4 mutant colon adenoma cell line. Cancer Res. 61, 256–260 (2001).

    CAS  PubMed  Google Scholar 

  20. Iwasaki, S. et al. Distribution and characterization of specific cellular binding proteins for bone morphogenetic protein-2. J. Biol. Chem. 270, 5476–5482 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Raida, M. et al. Expression, regulation and clinical significance of bone morphogenetic protein 6 in esophageal squamous-cell carcinoma. Int. J. Cancer 83, 38–44 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Kleeff, J. et al. Bone morphogenetic protein 2 exerts diverse effects on cell growth in vitro and is expressed in human pancreatic cancer in vivo. Gastroenterology 116, 1202–1216 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Heldin, C.-H., Miyazono, K. & Ten Dijke, P. TGF-β signaling from cell membrane to nucleus through SMAD proteins. Nature 390, 465–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Massague, J. TGFβ signaling: Receptors, transducers, and Mad proteins. Cell 85, 947–950 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Hoodless, P.A. et al. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489–500 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, F. et al. A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massague, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383, 832–836 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from nucleated cells. Nucleic Acids Res. 16, 1215 (1988).

  29. Cottingham, R.W., Idury, R.M. & Schaffer, A.A. Faster sequential linkage computations. Am. J. Hum. Genet. 53, 252–263 (1993).

    PubMed  PubMed Central  Google Scholar 

  30. Thiagalingam, S. et al. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc. Natl. Acad. Sci. USA 98, 2698–2702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Smith and E. Stone for their support in this project; and E. Lemyre, C. Gilpin, J. Peters and C. Prows for referring members of these JP families for genetic studies. This work was supported by a grant from the Roy J. Carver Charitable Trust, the Clayton Fund, the American College of Surgeons Owen H. Wangensteen Faculty Research Fellowship, and National Institutes of Health grants CA43460 and CA62924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Howe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howe, J., Bair, J., Sayed, M. et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28, 184–187 (2001). https://doi.org/10.1038/88919

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing