Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of angiogenesis and arteriogenesis

Abstract

Endothelial and smooth muscle cells interact with each other to form new blood vessels. In this review, the cellular and molecular mechanisms underlying the formation of endothelium-lined channels (angiogenesis) and their maturation via recruitment of smooth muscle cells (arteriogenesis) during physiological and pathological conditions are summarized, alongside with possible therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Endothelial precursors (angioblasts) in the embryo assemble in a primitive network (vasculogenesis), that expands and remodels (angiogenesis).
Figure 2
Figure 3: VEGF initiates assembly of endothelial cells (EC), PDGF-BB recruits pericytes (PC) and smooth muscle cells (SMC), whereas angiopoietin-1 (Ang1) and TGF-b1 stabilize the nascent vessel.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Benjamin, L.E., Hemo, I. & Keshet, E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF- B and VEGF. Development 125, 1591–1598 (1998).

    CAS  PubMed  Google Scholar 

  3. Hirschi, K.K. & d'Amore, P.A. Pericytes in the microvasculature. Cardiovasc. Res. 32, 687–698 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara, N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 56, 794–814 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Carmeliet, P. et al. Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth factor allele. Nature 380, 435–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Shalaby, F., Ho, J., Stanford, W.L. & al, e. A requirement for Flk-1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Fong, G.H., Zhang, L., Bryce, D.M. & Peng, J. Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126, 3015–3025 (1999).

    CAS  PubMed  Google Scholar 

  9. Dickson, M.C et al. Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121, 1845–1854 (1995).

    CAS  PubMed  Google Scholar 

  10. Bader, B.L., Rayburn, H., Crowley, D. & Hynes, R.O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell 95, 507–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Lyden, D. et al. Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Carmeliet, P. Developmental biology. Controlling the cellular brakes [news]. Nature 401, 657–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Zhong, T.P., Rosenberg, M., Mohideen, M.A., Weinstein, B. & Fishman, M.C. gridlock, an HLH Gene Required for Assembly of the Aorta in Zebrafish. Science 287, 1820–1824 (2000).

  14. Gale, N.W. & Yancopoulos, G.D. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13, 1055–1066 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi, T. et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5, 434–438 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Peichev, M. et al. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood95(2000).

  17. Eliceiri, B.P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4, 915–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Thurston, G. et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nature Medicine 6, 1–4 (2000).

  19. Maisonpierre, P.C. et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55–60 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Coussens, L.M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13, 1382–1397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heymans, S. et al. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure [In Process Citation]. Nat Med 5, 1135–1142 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bajou, K. et al. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 4, 923–928 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Brooks, P.C., Silletti, S., von Schalscha, T.L., Friedlander, M. & Cheresh, D.A. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Taipale, J. et al. Vascular endothelial growth factor receptor-3. Curr Top Microbiol Immunol 237, 85–96 (1999).

    CAS  PubMed  Google Scholar 

  26. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. & Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform- specific receptor for vascular endothelial growth factor. Cell 92, 735–745 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Gerber, H.P. et al. VEGF is required for growth and survival in neonatal mice. Development 126, 1149–1159 (1999).

    CAS  PubMed  Google Scholar 

  28. Carmeliet, P. et al. Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5, 495–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Dumont, D.J. et al. Cardiovascular failure in mouse embryos deficient in VEGF receptor-3. Science 282, 946–949 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Ferrara, N. & Alitalo, K. Clinical applications of angiogenic growth factors and their inhibitors. Nat Med 5, 1359–1364 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. & Shibuya, M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95, 9349–9354 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suri, C. et al. Increased vascularization in mice overexpressing angiopoietin-1. Science 282, 468–471 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, M. et al. Fibroblast growth factor 2 control of vascular tone. Nat Med 4, 201–207 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindahl, P., Hellstrom, M., Kalen, M. & Betsholtz, C. Endothelial-perivascular cell signaling in vascular development: lessons from knockout mice. Curr Opin Lipidol 9, 407–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Gohongi, T. et al. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1. Nat Med 5, 1203–1208 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Varner, J.A., Brooks, P.C. & Cheresh, D.A. Review: The integrin αvβ3: angiogenesis and apoptosis. Cell Adhesion Communication 3, 367–374 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Murohara, T. et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101, 2567–2578 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O'Reilly, M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppresion of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. O'Reilly, M.S. et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277–285 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Helmlinger, G., Yuan, F., Dellian, M. & Jain, R.K. Interstitial pH and pO2 gradients in solid tumors in vivo : high- resolution measurements reveal a lack of correlation. Nat Med 3, 177–182 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Carmeliet, P. et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Jain, R.K. et al. Endothelial cell death, angiogenesis, and microvascular function after castration in an androgen-dependent tumor: role of vascular endothelial growth factor. Proc Natl Acad Sci U S A 95, 10820–10825 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1, 1024–1028 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Holash, J., Wiegand, S.J. & Yancopoulos, G.D. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356–5362 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Risau, W. Development and differentiation of endothelium. Kidney Int Suppl 67, S3–6 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Maniotis, A.J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155, 739–752 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ellerby, H.M. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5, 1032–1038 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Patan, S. TIE1 and TIE2 receptor tyrosine kinases inversely regulate embryonic angiogenesis by the mechanism of intussusceptive microvascular growth. Microvasc Res 56, 1–21 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Dettman, R.W., Denetclaw, W. Jr., Ordahl, C.P. & Bristow, J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193, 169–181 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Creazzo, T.L., Godt, R.E., Leatherbury, L., Conway, S.J. & Kirby, M.L. Role of cardiac neural crest cells in cardiovascular development. Annu Rev Physiol 60, 267–286 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Suri, C. et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87, 1171–1180 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Li, D.Y. et al. Defective angiogenesis in mice lacking endoglin. Science 284, 1534–1537 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Yanagisawa, H. et al. Role of Endothelin-1/Endothelin-A receptor-mediated signaling pathway in the aortic arch patterning in mice. J Clin Invest 102, 22–33 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lin, Q. et al. Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125, 4565–4574 (1998).

    CAS  PubMed  Google Scholar 

  55. Reddi, V., Zaglul, A., Pentz, E.S. & Gomez, R.A. Renin-expressing cells are associated with branching of the developing kidney vasculature. J Am Soc Nephrol 9, 63–71 (1998).

    CAS  PubMed  Google Scholar 

  56. Schaper, W. & Ito, W.D. Molecular mechanisms of coronary collateral vessel growth. Circ Res 79, 911–919 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Pereira, L. et al. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nature Genetics 17, 218–222 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Li, D.Y. et al. Elastin is an essential determinant of arterial morphogenesis. Nature 393, 276–280 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Segi, E. et al. Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem Biophys Res Commun 246, 7–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Gourdie, R.G., Wei, Y., Kim, D., Klatt, S.C. & Mikawa, T. Endothelin-induced conversion of embryonic heart muscle cells into impulse-conducting Purkinje fibers. Proc Natl Acad Sci U S A 95, 6815–6818 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawasaki, T. et al. A requirement for neuropilin-1 in embryonic vessel formation. Development 126, 4895–4902 (1999).

    CAS  PubMed  Google Scholar 

  62. Semenza, G.L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8, 588–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Maltepe, E., Schmidt, J.V., Baunoch, D., Bradfield, C.A. & Simon, C.M. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature 386, 403–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Carmeliet, P. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485–490 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Li, J. et al. PR39, a peptide regulator of angiogenesis. Nat Med 6, 49–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Vrancken Peeters, M.P. et al. Differences in development of coronary arteries and veins. Cardiovasc Res 36, 101–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 276, 1423–1425 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Sunderkotter, C., Steinbrink, K., Goebeler, M., Bhardwaj, R. & Sorg, C. Macrophages and angiogenesis. J Leukoc Biol 55, 410–422 (1994).

    Article  CAS  PubMed  Google Scholar 

  70. Isner, J. VEGF and neuropathy. Nature Medicine 6, 405–413 (2000): please, complete; I don't have the–full reference yet.

    Article  PubMed  Google Scholar 

  71. Thurston, G., Murphy, T.J., Baluk, P., Lindsey, J.R. & McDonald, D.M. Angiogenesis in mice with chronic airway inflammation: strain-dependent differences. Am J Pathol 153, 1099–1112 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks the members of the Center for Transgene Technology and + Gene Therapy and all external collaborators who contributed to these studies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 6, 389–395 (2000). https://doi.org/10.1038/74651

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/74651

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing