Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Proliferation, cell cycle and apoptosis in cancer

Abstract

Beneath the complexity and idiopathy of every cancer lies a limited number of 'mission critical' events that have propelled the tumour cell and its progeny into uncontrolled expansion and invasion. One of these is deregulated cell proliferation, which, together with the obligate compensatory suppression of apoptosis needed to support it, provides a minimal 'platform' necessary to support further neoplastic progression. Adroit targeting of these critical events should have potent and specific therapeutic consequences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of cancer is more complex than the straightforward linear accumulation of oncogenic mutations.
Figure 2: Activation of growth-deregulating lesions triggers 'sentinel' functions that guard the cell against acquiring mutations or propagating into an inappropriate somatic compartment.
Figure 3: Many stress signals encountered during tumour progression activate p53, resulting in apoptosis or growth arrest.
Figure 4: Growth deregulating lesions generate profound, diverse and cell-type specific pleiotropic changes in a cell and its surrounding.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Oller, A. R., Rastogi, P., Morgenthaler, S. & Thilly, W. G. A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay. Mutat. Res. 216, 149–161 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Evan, G. & Littlewood, T. A matter of life and cell death. Science 281, 1317–1322 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Pardee, A. B. G1 events and regulation of cell proliferation. Science 246, 603–608 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Roovers, K. & Assoian, R. K. Integrating the MAP kinase signal into the G1 phase cell cycle machinery. BioEssays 22, 818–826 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Massague, J., Blain, S. W. & Lo, R. S. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103, 295–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Sangfelt, O., Erickson, S. & Grander, D. Mechanisms of interferon-induced cell cycle arrest. Front. Biosci. 5, D479–D487 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Zhu, L. & Skoultchi, A. I. Coordinating cell proliferation and differentiation. Curr. Opin. Genet. Dev. 11, 91–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Bach, S. P., Renehan, A. G. & Potten, C. S. Stem cells: the intestinal stem cell as a paradigm. Carcinogenesis 21, 469–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Booth, C. & Potten, C. S. Gut instincts: thoughts on intestinal epithelial stem cells. J. Clin. Invest. 105, 1493–1499 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuchs, E. & Segre, J. A. Stem cells: a new lease on life. Cell 100, 143–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Raff, M. C. Social controls on cell survival and cell death. Nature 356, 397–400 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Raff, M. et al. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262, 695–700 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. DePinho, R. A. The age of cancer. Nature 408, 248–254 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Hunter, T. Signaling—2000 and beyond. Cell 100, 113–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Harbour, J. W. & Dean, D. C. The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Baudino, T. A. & Cleveland, J. L. The Max network gone mad. Mol. Cell. Biol. 21, 691–702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stocker, H. & Hafen, E. Genetic control of cell size. Curr. Opin. Genet. Dev. 10, 529–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Elend, M. & Eilers, M. Cell growth: downstream of Myc—to grow or to cycle? Curr. Biol. 9, R936–R938 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Dang, C. V. et al. Function of the c-Myc oncogenic transcription factor. Exp. Cell Res. 253, 63–77 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Pelengaris, S., Rudolph, B. & Littlewood, T. Action of Myc in vivo—proliferation and apoptosis. Curr. Opin. Genet. Dev. 10, 100–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Gu, W. et al. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72, 309–324 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Lasorella, A., Noseda, M., Beyna, M. & Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature 407, 592–598 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Walczak, H. & Krammer, P. H. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp. Cell Res. 256, 58–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Vander Heiden, M. G. et al. Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc. Natl Acad. Sci. USA 97, 4666–4671 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hengartner, M. O. The biochemistry of apoptosis. Nature 407, 770–776 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Puthalakath, H., Huang, D. C., O'Reilly, L. A., King, S. M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Yu, H. & Rohan, T. Role of the insulin-like growth factor family in cancer development and progression. J. Natl Cancer Inst. 92, 1472–1489 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Stambolic, V., Mak, T. W. & Woodgett, J. R. Modulation of cellular apoptotic potential: contributions to oncogenesis. Oncogene 18, 6094–6103 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Maehama, T. & Dixon, J. E. PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol. 9, 125–128 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Bonneau, D. & Longy, M. Mutations of the human PTEN gene. Hum. Mutat. 16, 109–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Kandel, E. S. & Hay, N. The regulation and activities of the multifunctional serine/threonine kinase Akt/PKB. Exp. Cell Res. 253, 210–229 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Evan, G. et al. Induction of apoptosis in fibroblasts by c-myc protein. Cell 63, 119–125 (1992).

    Article  Google Scholar 

  40. Askew, D., Ashmun, R., Simmons, B. & Cleveland, J. Constitutive c-myc expression in IL-3-dependent myeloid cell line suppresses cycle arrest and accelerates apoptosis. Oncogene 6, 1915–1922 (1991).

    CAS  PubMed  Google Scholar 

  41. Harrington, E. A., Fanidi, A. & Evan, G. I. Oncogenes and cell death. Curr. Opin. Genet. Dev. 4, 120–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Evan, G. & Littlewood, T. The role of c-myc in cell growth. Curr. Opin. Genet. Dev. 3, 44–49 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Almasan, A. et al. Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc. Natl Acad. Sci. USA 92, 5436–5440 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin, X. Q., Livingston, D. M., Kaelin, W. G. Jr & Adams, P. D. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 91, 10918–10922 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shan, B. & Lee, W. H. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14, 8166–8173 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dimri, G. P., Itahana, K., Acosta, M. & Campisi, J. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell. Biol. 20, 273–285 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hirakawa, T. & Ruley, H. E. Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. Proc. Natl Acad. Sci. USA 85, 1519–1523 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ferbeyre, G. et al. PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Fanidi, A., Harrington, E. & Evan, G. Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359, 554–556 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Bissonnette, R., Echeverri, F., Mahboubi, A. & Green, D. Apoptotic cell death induced by c-myc is inhibited by bcl-2. Nature 359, 552–554 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Wagner, A. J., Small, M. B. & Hay, N. Myc-mediated apoptosis is blocked by ectopic expression of bcl-2. Mol. Cell. Biol. 13, 2432–2440 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Harrington, E. A., Bennett, M. R., Fanidi, A. & Evan, G. I. c-Myc-induced apoptosis in fibroblasts is inhibited by specific cytokines. EMBO J. 13, 3286–3295 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Strasser, A., Harris, A. W., Bath, M. L. & Cory, S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature 348, 331–333 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Phillips, A. C., Ernst, M. K., Bates, S., Rice, N. R. & Vousden, K. H. E2F-1 potentiates cell death by blocking anti-apoptotic signaling pathways. Mol. Cell. 4, 771–781 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Hueber, A.-O. et al. Requirement for the CD95 receptor-ligand pathway in c-Myc induced apoptosis. Science 278, 1305–1309 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Klefstrom, J. et al. c-Myc induces cellular susceptibility to the cytotoxic action of TNF-α. EMBO J. 13, 5442–5450 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lutz, W., Fulda, S., Jeremias, I., Debatin, K. M. & Schwab, M. MycN and IFNγ cooperate in apoptosis of human neuroblastoma cells. Oncogene 17, 339–346 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Sherr, C. J. & Weber, J. D. The ARF/p53 pathway. Curr. Opin. Genet. Dev. 10, 94–99 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Woods, D. B. & Vousden, K. H. Regulation of p53 function. Exp. Cell Res. 264, 56–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Frame, S. et al. Epithelial carcinogenesis in the mouse: correlating the genetics and the biology. Phil. Trans. R. Soc. Lond. B 353, 839–845 (1998).

    Article  CAS  Google Scholar 

  63. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  CAS  PubMed  Google Scholar 

  64. Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A. & van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397, 164–168 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Maestro, R. et al. twist is a potential ongogene that inhibits apoptosis. Genes Dev. 13, 2207–2217 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jacobs, J. J. et al. Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers. Nature Genet. 26, 291–299 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Esteller, M. et al. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res. 60, 129–133 (2000).

    CAS  PubMed  Google Scholar 

  68. Robertson, K. D. & Jones, P. A. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18, 6457–6473 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kemp, C. J., Donehower, L. A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).

    Article  CAS  PubMed  Google Scholar 

  71. Greenhalgh, D. A., Wang, X. J., Donehower, L. A. & Roop, D. R. Paradoxical tumor inhibitory effect of p53 loss in transgenic mice expressing epidermal-targeted v-rasHa, v-fos, or human transforming growth factor alpha. Cancer Res. 56, 4413–4423 (1996).

    CAS  PubMed  Google Scholar 

  72. Wang, X. J., Greenhalgh, D. A., Donehower, L. A. & Roop, D. R. Cooperation between Ha-ras and fos or transforming growth factor alpha overcomes a paradoxic tumor-inhibitory effect of p53 loss in transgenic mouse epidermis. Mol. Carcinogenesis 29, 67–75 (2000).

    Article  CAS  Google Scholar 

  73. Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Schmitt, C. A. & Lowe, S. W. Apoptosis and therapy. J. Pathol. 187, 127–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Gibbs, J. B. Mechanism-based target identification and drug discovery in cancer research. Science 287, 1969–1973 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by myc in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Chin, L. et al. Essential role for oncogenic Ras in tumour maintenance. Nature 400, 468–472 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Brandvold, K. A., Neiman, P. & Ruddell, A. Angiogenesis is an early event in the generation of myc-induced lymphomas. Oncogene 19, 2780–2785 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Breit, S. et al. The N-myc oncogene in human neuroblastoma cells: down-regulation of an angiogenesis inhibitor identified as activin A. Cancer Res. 60, 4596–4601 (2000).

    CAS  PubMed  Google Scholar 

  82. Ngo, C. V. et al. An in vivo function for the transforming Myc protein: elicitation of the angiogenic phenotype. Cell Growth Differ. 11, 201–210 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Janz, A., Sevignani, C., Kenyon, K., Ngo, C. V. & Thomas-Tikhonenko, A. Activation of the myc oncoprotein leads to increased turnover of thrombospondin-1 mRNA. Nucleic Acids Res. 28, 2268–2275 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. O'Dwyer, M. E. & Druker, B. J. Status of bcr-abl tyrosine kinase inhibitors in chronic myelogenous leukamia. Curr. Opin. Oncol. 12, 594–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Morin, M. J. From oncogene to drug: development of small molecule tyrosine kinase inhibitors as anti-tumor and anti-angiogenic agents. Oncogene 19, 6574–6583 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Krek, W. VHL takes HIF's breath away. Nature Cell Biol. 2, E1–E3 (2000).

    Article  CAS  Google Scholar 

  87. Huang, Y. Q., Li, J. J. & Karpatkin, S. Thrombin inhibits tumor cell growth in association with up-regulation of p21(waf/cip1) and caspases via a p53-independent, STAT-1-dependent pathway. J. Biol. Chem. 275, 6462–6468 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, Y. N. et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl Acad. Sci. USA 96, 4325–4329 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evan, G., Vousden, K. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001). https://doi.org/10.1038/35077213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35077213

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing