Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genomic analysis of metastasis reveals an essential role for RhoC

A Corrigendum to this article was published on 21 June 2001

Abstract

The most damaging change during cancer progression is the switch from a locally growing tumour to a metastatic killer. This switch is believed to involve numerous alterations that allow tumour cells to complete the complex series of events needed for metastasis1. Relatively few genes have been implicated in these events2,3,4,5. Here we use an in vivo selection scheme to select highly metastatic melanoma cells. By analysing these cells on DNA arrays, we define a pattern of gene expression that correlates with progression to a metastatic phenotype. In particular, we show enhanced expression of several genes involved in extracellular matrix assembly and of a second set of genes that regulate, either directly or indirectly, the actin-based cytoskeleton. One of these, the small GTPase RhoC, enhances metastasis when overexpressed, whereas a dominant-negative Rho inhibits metastasis. Analysis of the phenotype of cells expressing dominant-negative Rho or RhoC indicates that RhoC is important in tumour cell invasion. The genomic approach allows us to identify families of genes involved in a process, not just single genes, and can indicate which molecular and cellular events might be important in complex biological processes such as metastasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo selection scheme.
Figure 2: Pulmonary metastases in lungs of mice injected with tumour cell lines.
Figure 3: RhoC regulates melanoma cell chemotaxis and invasion.
Figure 4: Metastatic capacity of A375 melanoma cells correlates with cell morphology.

Similar content being viewed by others

References

  1. Van Noorden, C. J. F., Meade-Tollin, L. C. & Bosman, F. T. Metastasis. Am. Sci. 86, 130–141 (1998).

    Article  ADS  Google Scholar 

  2. Fidler, I. J. & Radinsky, R. Search for genes that suppress cancer metastasis. J. Natl Cancer Inst. 88, 1700–1703 (1996).

    Article  CAS  Google Scholar 

  3. Roberts, D. D. Regulation of tumor growth and metastasis by thrombospondin-1. FASEB J. 10, 1183–1191 ( 1996).

    Article  CAS  Google Scholar 

  4. Bao, L. et al. Thymosin β15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nature Med. 2, 1322–1328 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Habets, G. G. M. et al. Identification of an invasion-inducing gene, Tiam-1, that encodes a protein with homology to GDP-GTP exchangers for rho-like proteins. Cell 77, 537–549 (1994).

    Article  CAS  Google Scholar 

  6. Fidler, I. J. Selection of successive tumour lines for metastasis. Nature 242, 148–149 (1973).

    CAS  Google Scholar 

  7. Kozlowski, J. M., Hart, I. R., Fidler, I. J. & Hanna, N. A human melanoma cell line heterogeneous with respect to metastatic capacity in athymic nude mice. J. Natl Cancer Inst. 72, 913–917 (1984).

    CAS  PubMed  Google Scholar 

  8. Welch, D. R. et al. Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene 9, 255–262 (1994).

    CAS  PubMed  Google Scholar 

  9. Zhang, L. et al. Gene expression profiles in normal and cancer cells. Science 276, 1268–1272 ( 1997).

    Article  CAS  Google Scholar 

  10. Maniotis, A. J. et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 155, 739–752 ( 1999).

    Article  CAS  Google Scholar 

  11. Humphries, M. J., Olden, K. & Yamada, K. M. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 233, 467–469 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Van Aelst, L. & D'Souza-Schorey, C. Rho GTPases and signaling networks. Genes Dev. 11, 2295– 2322 (1997).

    Article  CAS  Google Scholar 

  13. Suwa, H. et al. Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br. J. Cancer 77, 147–152 (1998).

    Article  CAS  Google Scholar 

  14. Hall, A. K. Differential expression of thymosin genes in human tumors and in the developing human kidney. Int. J. Cancer 48, 672– 677 (1991).

    Article  CAS  Google Scholar 

  15. Weterman, M. A. J., van Muijen, G. N. P., Ruiter, D. J. & Bloemers, H. P. J. Thymosin β-10 expression in melanoma cell lines and melanocytic lesions: a new progression marker for human cutaneous melanoma. Int. J. Cancer 53, 278–284 ( 1993).

    Article  CAS  Google Scholar 

  16. Chen, L., O'Bryan, J. P., Smith, H. S. & Liu, E. Overexpression of matrix Gla protein mRNA in malignant human breast cells: isolation by differential cDNA hybridization. Oncogene 5, 1391–1395 (1990).

    CAS  PubMed  Google Scholar 

  17. Schonherr, E. et al. Interaction of biglycan with type 1 collagen. J. Biol. Chem. 270, 2776–2783 (1995).

    Article  CAS  Google Scholar 

  18. Svensson, L. et al. Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon. J. Biol. Chem. 274, 9636–9647 ( 1999).

    Article  CAS  Google Scholar 

  19. Ruoslahti, E. Fibronectin and its integrin receptors in cancer. Adv. Cancer Res. 76, 1–20 (1999 ).

    Article  CAS  Google Scholar 

  20. Jeffers, M., Rong, S. & Vande Woude, G. F. Enhanced tumorigenicity and invasion-metastasis by hepatocyte growth factor/scatter factor-Met signalling human cells concomitant with induction of the urokinase proteolysis network. Mol. Cell. Biol. 16, 1115–1125 ( 1996).

    Article  CAS  Google Scholar 

  21. Chambers, A. F. & Matrisian, L. M. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl Cancer Inst. 89, 1260–1270 (1997).

    Article  CAS  Google Scholar 

  22. Albelda, S. M. et al. Integrin distribution in malignant melanoma: association of the β3 subunit with tumor progression. Cancer Res. 50, 6757–6764 (1990).

    CAS  PubMed  Google Scholar 

  23. Quilliam, L. A., Khosravi-Far, R., Huff, S. Y. & Der, C. J. Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. BioEssays 17, 395– 404 (1995).

    Article  CAS  Google Scholar 

  24. Feig, L. A. & Cooper, G. M. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8, 3235–3243 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  26. Fambrough, D., McClure, K., Kazlauskas, A. & Lander, E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell 97, 727–741 (1999).

    Article  CAS  Google Scholar 

  27. Liu, X. et al. Transforming growth factor β-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc. Natl Acad. Sci. USA 94, 10669 –10674 (1997).

    Article  ADS  CAS  Google Scholar 

  28. Yebra, M. et al. Requirement of receptor-bound urokinase-type plasminogen activator for integrin αvβ5-directed cell migration. J. Biol. Chem. 271, 29393–29399 ( 1996).

    Article  CAS  Google Scholar 

  29. Clark, E. A., King, W. G., Brugge, J. S., Symons, M. & Hynes, R. O. Integrin-mediated signals regulated by members of the rho family of GTPases. J. Cell Biol. 142, 573–586 (1998).

Download references

Acknowledgements

We thank C. Huard, C. Whittaker, S. Robinson, J. Lively, D. Hirsch, D. Crowley and P. Tamayo for technical assistance and advice, and H. Lodish, G. Nolan and J. Fidler, for reagents. This work was supported in part by grants from the National Cancer Institute (to R.O.H), Affymetrix, Inc., Bristol-Myers Squibb and Millenium Pharmaceuticals (to E.S.L.), and a Merck/MIT postdoctoral fellowship (to E.A.C.). R.O.H. is an investigator and E.A.C. was an associate of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, E., Golub, T., Lander, E. et al. Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406, 532–535 (2000). https://doi.org/10.1038/35020106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35020106

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing