Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Suppression of c-ras transformation by GTPase-activating protein

Abstract

THE ras genes are required for normal cell growth and mediate transformation by oncogenes encoding protein tyrosine kinases1,2. Normal ras can transform cells in vitro and in vivo, but mutationally activated ras does so much more efficiently, and highly transforming mutant versions of ras have been isolated from a variety of human and animal tumours (reviewed in refs 3–5). The ras genes encode membrane-associated, guanine nucleotide-binding proteins that are active when GTP is bound and inactive when GDP is bound6–8. The slow intrinsic GTPase activity of normal mammalian Ras proteins can be greatly accelerated by the GTPase-activating protein (GAP), which is predominantly cytoplasmic. This activity of GAP, which can increase with cell density in contact-inhibited cells9, suggests that it functions as a negative, upstream regulator of ras. Other studies10,11, however, show that GAP interacts with a region of ras-encoded protein implicated in ras effector function12,13, which raises the possibility that GAP might also be a downstream target of ras (reviewed in ref. 14). Mutationally activated ras-encoded proteins also interact with GAP15, although they are resistant to its catalytic activity7. In an attempt to define the role of GAP in ras-mediated transformation, we examined the effects on transformation of normal or mutant ras when cells overexpress GAP. We found that GAP suppresses transformation of NIH 3T3 cells by normal Ha-ras (c-ras) but does not inhibit transformation by activated Ha-ras (v-ras). These results support the hypothesis that GAP functions as a negative regulator of normal ras and make it unlikely that GAP alone is the ras target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mulcahy, L. S., Smith, M. R. & Stacey, D. W. Nature 313, 241–243 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Smith, M. R., DeGudicibus, S. J. & Stacey, D. W. Nature 320, 540–543 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barbacid, M. Ann. Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Gibbs, J. B. & Marshall, M. S. Microbiol. Rev. 53, 171–185 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Velu, T. J., Vass, V. C., Lowy, D. R. & Tambourin, P. E. J. Virol. 63, 1384–1392 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Field, J., Broek, D., Kataoka, T. & Wiglet, M. Molec. cell. Biol. 7, 2128–2133 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trahey, M. & McCormick, F. Science 238, 542–545 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Satoh, T., Nakamura, S. & Kaziro, Y. Molec. cell. Biol. 7, 4553–4556 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoshino, M., Kawakita, M. & Hattori, S. Molec. cell. Biol. 8, 4169–4173 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adari, H., Lowy, D. R., Willumsen, B. M., Der, C. J. & McCormick, F. Science 240, 518–521 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Calės, C., Hancock, J. F., Marshall, C. & Hall, A. Nature 332, 548–551 (1988).

    Article  ADS  PubMed  Google Scholar 

  12. Sigal, I. S., Gibbs, J. B., D'Alonzo, J. S. & Scolnick, E. M. Proc. natn. Acad. Sci. U.S.A. 83, 4725–4729 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Willumsen, B. M. et al. Molec. cell. Biol. 9, 2646–2654 (1986).

    Article  Google Scholar 

  14. McCormick, F. Cell 56, 5–8 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Vogel, U. S. et al. Nature 335, 90–93 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Trahey, M. et al. Science 242, 1697–1700 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Jhappan, C., Vande Woude, G. P. & Robins, T. J. Virol. 60, 750–753 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stone, J. C., Vass, W. C., Willumsen, B. M. & Lowy, D. R. Molec. cell. Biol. 8, 3565–3569 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Blair, D. G., McClements, W. L., Oskersson, M. K., Fischinger, P. J. & Vande Woude, G. F. Proc. natn. Acad. Sci. U.S.A. 77, 3504–3508 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Hartman, S. C. & Mulligan, R. C. Proc. natn. Acad. Sci. U.S.A. 85, 8047–8051 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Molloy, C. J. et al. Nature 342, 711–714 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Marshall, M. S. et al. EMBO J. 8, 1105–1110 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ballester, R. et al. Cell 59, 681–686 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Tanaka, K. et al. Cell 60, 803–807 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Field, J. et al. Molec. cell. Biol. 8, 2159–2165 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beckner, S. K., Hattori, S. & Shih, T. Y. Nature 317, 71–73 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Levitzki, A., Rudick, J., Pastan, I., Vass, W. C. & Lowy, D. R. FEBS Lett. 197, 134–138 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Ellis, C., Moran, M., McCormick, F. & Pawson, T. Nature 343, 377–381 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Feldman, R. A., Lowy, D. R., Vass, W. C. & Velu, T. J. J. Virol. 63, 5469–5474 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhruva, B. R., Shenk, T. & Subramanian, K. N. Proc. Acad. Sci. U.S.A. 77, 4514–4518 (1980).

    Article  ADS  CAS  Google Scholar 

  31. Smith, P. K. et al. Analyt. Biochem. 150, 76–85 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Furth, M. E., Davis, L. J., Fleurdelys, B. & Scolnick, E. M. J. Virol. 43, 294–304 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, K., DeClue, J., Vass, W. et al. Suppression of c-ras transformation by GTPase-activating protein. Nature 346, 754–756 (1990). https://doi.org/10.1038/346754a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346754a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing