Skip to main content
Log in

Transforming growth factor-beta facilitates breast carcinoma metastasis by promoting tumor cell survival

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

We have shown recently that the hyaluronan receptor, CD44, and matrix metalloproteinase 9 (MMP-9) form a complex on the surface of TA/St mouse mammary carcinoma cells that activates latent transforming growth factor-beta (TGF-β) and is required for tumor invasion. Disruption of the CD44/MMP-9 complex by expression of soluble CD44 results in the loss of tumor invasiveness and abrogates tumor cell survival in host lung parenchyma following intravenous injection into syngeneic mice. To explore the molecular nature of the survival signals derived from the CD44/MMP-9 complex during the development of tumor metastasis, we investigated the possibility that activation of latent TGF-β by the CD44/MMP-9 complex is responsible for tumor cell survival in host lung parenchyma. TA3 cells overexpressing dominant negative soluble CD44 (TA3sCD44), which compromises native CD44 function and the ability of TA3 cells to develop metastases, were transfected with constitutively active or latent TGF-β2 and tested for their ability to form tumors in syngeneic mice. Our results demonstrate that expression of the constitutively active, but not the latent, form of TGF-β2 rescues TA3sCD44 cells from apoptosis during lung colonization. These observations provide evidence that activation of latent TGF-β constitutes an event downstream of CD44-dependent signals that is required for tumor cell survival and metastatic colony formation. The functional axis composed of CD44, MMP-9 and TGF-β may therefore play an important role in the metastatic proclivity of selected tumor types. Abbreviations: ECM – extracellular matrix; HA – hyaluronan; HSPG – heparan sulfate proteoglycan; MMP – matrix metalloproteinase; TGF-β– transforming growth factor β

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ruoslahti E. How cancer spreads. Sci. American 1996; 275: 72–7.

    CAS  Google Scholar 

  2. Liotta LA, Stetler-Stevenson WG. Principles of molecular cell biology of cancer: Cancer metastasis. In DeVita VT, Hellman S, Rosenberg SA (eds) Cancer: Principles and Practice of Oncology, 4th edition. Philadelphia: Lippincott 1993; 134–49.

    Google Scholar 

  3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  PubMed  CAS  Google Scholar 

  4. Kim J, Yu W, Kovalski K, Ossowski L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 1998; 94: 353–62.

    Article  PubMed  CAS  Google Scholar 

  5. Chambers AF, Matrisian LM. Changing Views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 1997; 89: 1260–70.

    Article  PubMed  CAS  Google Scholar 

  6. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001; 411: 375–9.

    Article  PubMed  CAS  Google Scholar 

  7. Frisch SM, Ruoslahti E. Integrins and anoikis. Curr Opin Cell Biol 1997; 9: 701–6.

    Article  PubMed  CAS  Google Scholar 

  8. Mignatti P, Robbins E, Rifkin DB. Tumor invasion through the human amniotic membrane: Requirement for a proteinase cascade. Cell 1986; 47: 487–98.

    Article  PubMed  CAS  Google Scholar 

  9. Chen WT. Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Enzyme Protein 1996; 49: 59–71.

    PubMed  CAS  Google Scholar 

  10. Murphy G, Gavrilovic J: Proteolysis and cell migration: creating a path? Curr Opin Cell Biol 1999; 11: 614–621.

    Article  PubMed  CAS  Google Scholar 

  11. Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Cancer Rev 2002; 2: 91–100.

    Article  Google Scholar 

  12. Ponta H, Sherman L, Herrlich PA. CD44: From adhesion molecules to signaling regulators. Nat Mol Cell Biol Rev 2003; 4: 33–45.

    Article  CAS  Google Scholar 

  13. Okamoto I. CD44 cleavage induced by a membrane-associated metalloproteinase plays a critical role in tumor cell migration. Oncogene 1999; 18: 1435–46.

    Article  PubMed  CAS  Google Scholar 

  14. McCawley LJ, Matrisian LM. Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol Med Today 2000; 4: 149–56.

    Article  Google Scholar 

  15. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002. 3: 161–74.

    Article  CAS  Google Scholar 

  16. Noel A, Gilles C, Bajou K et al. Emerging roles for proteinases in cancer. Invas Metast 1997; 17: 221–39.

    CAS  Google Scholar 

  17. McCawley LJ, Matrisian LM. Matrix metalloproteinases: They're not just for matrix anymore! Curr Opin Cell Biol 2001; 13: 534–40.

    Article  PubMed  CAS  Google Scholar 

  18. Chang C, Werb Z. The many faces of metalloproteases: Cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 2001; 11: S37–S43.

    PubMed  CAS  Google Scholar 

  19. Thiery JP. Epithelial-mesenchymal transitions in tumor progression. Nat Cancer Rev 2002; 2: 442–54.

    Article  CAS  Google Scholar 

  20. Yu Q, Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 1999; 13: 35–48.

    PubMed  CAS  Google Scholar 

  21. Fiore E, Fusco C, Romero P, Stamenkovic I. Matrix metalloproteinase 9 (MMP-9/gelatinase B) proteolytically cleaves ICAM-1 and participates in tumor cell resistance to natural killer cell-mediated cytotoxicity. Oncogene 2002; 21: 5213–23.

    Article  PubMed  CAS  Google Scholar 

  22. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev 2000; 14: 163–76.

    PubMed  Google Scholar 

  23. Yu Q, Toole BP, Stamenkovic I. Induction of apoptosis of metastatic mammary carcinoma cells in vivo by disruption of tumor cell surface CD44 function. J Exp Med 1997; 186: 1985–96.

    Article  PubMed  CAS  Google Scholar 

  24. Teder P, Vandivier RW, Jiang D et al. Resolution of lung inflammation by CD44. Science 2002; 296: 155–8.

    Article  PubMed  CAS  Google Scholar 

  25. Lee CG, Homer RJ, Zhu Z et al. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2002; 194: 809–21.

    Article  Google Scholar 

  26. Akhurst RJ, Derynck R. TGF-β signalling in cancer-A double-edged sword. Trend Cell Biol 2001; 11: S44–S51.

    CAS  Google Scholar 

  27. Derynck R, Akhurst RJ, Balmain A. TGF-β signalling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.

    Article  PubMed  CAS  Google Scholar 

  28. Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma invasiveness and metastasis. Curr Biol 1998; 8: 1243–52.

    Article  PubMed  CAS  Google Scholar 

  29. Yin JJ, Selander K, Chirgwin JM et al. TGFbeta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastasis development. J Clin Invest 1999; 103: 197–206.

    PubMed  CAS  Google Scholar 

  30. Weeks BH, He W, Olson KL, Wang XJ. Inducible expression of transforming growth factor β1 in papillomas causes rapid metastasis. Cancer Res 2001; 61: 7435–43.

    PubMed  CAS  Google Scholar 

  31. Oft M, Peli J, Rudaz C et al. TGF-beta 1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996; 10: 2462–77.

    PubMed  CAS  Google Scholar 

  32. Janda E, Lehmann K, Killisch I et al. Ras and TGFbeta cooperatively regulate epthelial cell plasticity and metastasis: Dissection of Ras signaling pathways. J Cell Biol 2002; 156: 299–313.

    Article  PubMed  CAS  Google Scholar 

  33. Sellheyer K, Brckenbach JR, Rothnagel JA et al. Inhibition of skin development by overexpression of transforming growth factor β1 in the epidermis of transgenic mice. Proc Natl Acad Sci USA 1993; 90: 137–241.

    Article  Google Scholar 

  34. Sime PJ, Xing Z, Graham FL et al. Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997; 100: 68–76.

    Article  Google Scholar 

  35. Border WA, Ruoslahti E. Transforming growth factor-β in disease: The dark side of tissue repair. J Clin Invest 1992; 90: 1–7.

    PubMed  CAS  Google Scholar 

  36. Stamenkovic I. Matirx metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 2000; 10: 415–33.

    Article  PubMed  CAS  Google Scholar 

  37. Stamenkovic I. Extracellular matrix remodeling: The role of matrix metalloproteinases. J Pathol 2003; 448–64.

  38. Nakahara H, Howard L, Thompson EW et al. Transmembrane/cytoplasic domain-mediated membrane type 1 matrix metalloproteinase docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA 1997; 94: 7959–64.

    Article  PubMed  CAS  Google Scholar 

  39. Guo H, Li R, Toole BP. EMMPRIN (CD147) an inducer of matrix metalloproteinase synthesis also binds interstitial collagenase to the tumor cell surface. Cancer Res 2000; 60: 888–91.

    PubMed  CAS  Google Scholar 

  40. Brooks PC, Stromblad S, Sanders LC et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin avβ3. Cell 1996; 85: 683–93.

    Article  PubMed  CAS  Google Scholar 

  41. Yu WH, Woessner Jr JF. Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 2000; 11: 4183–91.

    Article  Google Scholar 

  42. Yu WH, Woessner Jr JF, McNeish JD, Stamenkovic I. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 2002; 16: 307–23.

    Article  PubMed  CAS  Google Scholar 

  43. Wolf K, Mazo I, Leung H et al. Compensation mechanism in tumor cell migration: Mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 2003; 160: 267–77.

    Article  PubMed  CAS  Google Scholar 

  44. Hotary KD, Allen ED, Brooks PC et al. Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 2003; 114: 33–45.

    Article  PubMed  CAS  Google Scholar 

  45. Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer and heritable disorders. Cell 2000; 103: 295–309.

    Article  PubMed  CAS  Google Scholar 

  46. Kulkarni AB, Huh CG, Becker D et al. Transforming growth factor b1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993;90: 770–4.

    Article  PubMed  CAS  Google Scholar 

  47. Cui W, Fowlis DJ, Bryson S et al. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86: 531–42.

    Article  PubMed  CAS  Google Scholar 

  48. Muraoka RS, Dumont N, Ritter CA et al. Blockade of TGFβ I inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 2002; 109: 1551–9.

    Article  PubMed  CAS  Google Scholar 

  49. Yang YA, Dukhanina O, Tang B et al. Lifetime exposure to a soluble TGFβ antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002; 109: 1607–15.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Q., Stamenkovic, I. Transforming growth factor-beta facilitates breast carcinoma metastasis by promoting tumor cell survival. Clin Exp Metastasis 21, 235–242 (2004). https://doi.org/10.1023/B:CLIN.0000037705.25256.d3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CLIN.0000037705.25256.d3

Navigation