Skip to main content
Log in

Endothelial Cells of Tumor Vessels: Abnormal but not Absent

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The question of whether some blood vessels in tumors of non-vascular origin are lined by cancer cells has been discussed for many years because of the relevance to metastasis, access of drugs to tumor cells, and the effectiveness of angiogenesis inhibitors. Most evidence favoring the existence of tumor cell-lined vessels has come from observations of standard histopathological tissue sections or from transmission and scanning electron microscopic studies. However, it has been difficult to determine convincingly just how abundant these vessels are in tumors. On the one hand, virtually the entire microvasculature is supposedly lined by tumor cells in aggressive uveal melanomas, assuming the presence of vasculogenic mimicry where tumor cells masquerading as endothelial cells create the channels for blood flow. On the other hand, morphometric studies using immunohistochemistry and green fluorescent protein-transfected tumor cells suggest that human colon cancer cells constitute only 3% of the vessel surface in tumors grown orthotopically in mice. This commentary weighs evidence that cancer cells are located in the wall of tumor vessels and discusses the pitfalls in identifying such vessels. Published data along with new observations illustrate the challenges of making an unequivocal identification of tumor cells in vessel walls. Taken together, current evidence suggests that cancer cells contribute at most only a small proportion of the lining of blood vessels in tumors and may be migrating through vessel walls or exposed by defects in the endothelium. Even in aggressive uveal melanomas, blood flow probably occurs mainly through channels lined by endothelial cells, not tumor cells, and most existing data do not support a functionally significant contribution of vasculogenic mimicry. Innovative new approaches that distinguish pleomorphic tumor cells from abnormal endothelial cells in vessel walls will help to define the incidence and importance of tumor cell-lined blood vessels in drug delivery and metastasis via the bloodstream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Willis RA: Pathology of Tumours. Butterworth & Co., Ltd., London, 1948

    Google Scholar 

  2. Franç ois J: Malignant melanomata of the choroid. Montgomery Memorial Lecture 1961. Br J Ophthalmol 47: 736-743, 1963

    Google Scholar 

  3. Jensen OA: Malignant melanoma of the choroid of a peculiar cavernous type. Arch Ophthalmol 72: 337-340, 1964

    Google Scholar 

  4. Duke-Elder S, Perkins ES: Cysts and tumours of the uveal tract. In: Duke-Elder S (ed) System of Ophthalmology, 1 edn, Vol IX. Diseases of the Uveal Tract, C.V. Mosby Company, St. Louis, 1966, pp 754-937

    Google Scholar 

  5. Franç ois J, Neetens A: Physico-anatomical studies of spontaneous and experimental intraocular newgrowths: vascular supply. Bibl Anat 9: 403-411, 1967

    Google Scholar 

  6. Jensen OA: The 'Knapp-Rø nne' type of malignant melanoma of the choroid: a haemangioma-like melanoma with a typical clinical picture. So-called 'preretinal malignant choroidal melanoma'. Acta Ophthalmol (Copenh) 54: 41-54, 1976

    Google Scholar 

  7. Warren BA, Shubik P: The growth of the blood supply to melanoma transplants in the hamster cheek pouch. Lab Invest 15: 464-478, 1966

    Google Scholar 

  8. Warren BA: The vascular morphology of tumors. In: Peterson H-I (ed) Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors, CRC Press, Inc., Boca Raton, 1979, pp 1-48

    Google Scholar 

  9. Prause JU, Jensen OA: Scanning electron microscopy of frozen-cracked, dry-cracked and enzyme-digested tissue of human malignant choroidal melanomas. Albrecht Von Graefes Arch Klin Exp Ophthalmol 212: 217-225, 1980

    Google Scholar 

  10. Hammersen F, Endrich B, Messmer K: The fine structure of tumor blood vessels. I. Participation of non-endothelial cells in tumor angiogenesis. Int J Microcirc Clin Exp 4: 31-43, 1985

    Google Scholar 

  11. Konerding MA, Steinberg F, Streffer C: The vasculature of xenotransplanted human melanomas and sarcomas on nude mice. II. Scanning and transmission electron microscopic studies. Acta Anat (Basel) 136: 27-33, 1989

    Google Scholar 

  12. Nasu R, Kimura H, Akagi K, Murata T, Tanaka Y: Blood flow influences vascular growth during tumour angiogenesis. Br J Cancer 79: 780-786, 1999

    Google Scholar 

  13. Chang YS, diTomaso E, Roberge S, McDonald DM, Jain RK, Munn LL: Abundance of neoplastic cells in vessel walls of human tumor xenografts. Proc Am Assoc Cancer Res 41: 2000

  14. Jain RK: Determinants of tumor blood flow: a review. Cancer Res 48: 2641-2658, 1988

    Google Scholar 

  15. Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449-6465, 1989

    Google Scholar 

  16. Majno G, Joris I: Cells, Tissue, and Disease: Principles of General Pathology, Blackwell Science, Cambridge, MA, 1996, p 786, Figure 27.9

    Google Scholar 

  17. Maniotis AJ, Folberg R, Hess A, Seftor EA, Gardner LM, Pe'er J, Trent JM, Meltzer PS, Hendrix MJ: Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 155: 739-752, 1999

    Google Scholar 

  18. Folberg R, Hendrix MJC, Maniotis AJ: Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 156: 361-381, 2000

    Google Scholar 

  19. McDonald DM, Munn L, Jain RK: Vasculogenic mimicry: how convincing, how novel, and how significant? Am J Pathol 156: 383-388, 2000

    Google Scholar 

  20. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM: Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133: 95-109, 1988

    Google Scholar 

  21. Less JR, Skalak TC, Sevick EM, Jain RK: Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51: 265-273, 1991

    Google Scholar 

  22. Kohn S, Nagy JA, Dvorak HF, Dvorak AM: Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 67: 596-607, 1992

    Google Scholar 

  23. Konerding MA, Miodonski AJ, Lametschwandtner A: Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc 9: 1233-1243; discussion 1243-1244, 1995

    Google Scholar 

  24. Less JR, Posner MC, Skalak TC, Wolmark N, Jain RK: Geometric resistance and microvascular network architecture of human colorectal carcinoma. Microcirculation 4: 25-33, 1997

    Google Scholar 

  25. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM: Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156: 1363-1380, 2000

    Google Scholar 

  26. Papadimitrou JM, Woods AE: Structural and functional characteristics of the microcirculation in neoplasms. J Pathol 116: 65-72, 1975

    Google Scholar 

  27. Steinberg F, Konerding MA, Streffer C: The vascular architecture of human xenotransplanted tumors: histological, morphometrical, and ultrastructural studies. J Cancer Res Clin Oncol 116: 517-524, 1990

    Google Scholar 

  28. Vermeulen PB, Verhoeven D, Fierens H, Hubens G, Goovaerts G, Van Marck E, De Bruijn EA, Van Oosterom AT, Dirix LY: Microvessel quantification in primary colorectal carcinoma: an immunohistochemical study. Br J Cancer 71: 340-343, 1995

    Google Scholar 

  29. Hewitt RE, Powe DG, Morrell K, Balley E, Leach IH, Ellis IO, Turner DR: Laminin and collagen IV subunit distribution in normal and neoplastic tissues of colorectum and breast. Br J Cancer 75: 221-229, 1997

    Google Scholar 

  30. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG: Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60: 1388-1393, 2000

    Google Scholar 

  31. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95: 4607-4612, 1998

    Google Scholar 

  32. Van den Brenk HA, Crowe M, Kelly H, Stone MG: The significance of free blood in liquid and solid tumours. Br J Exp Pathol 58: 147-159, 1977

    Google Scholar 

  33. Schechter JE, Felicio LS, Nelson JF, Finch CE: Pituitary tumorigenesis in aging female C57BL/6J mice: a light and electron microscopic study. Anat Rec 199: 423-432, 1981

    Google Scholar 

  34. Liwnicz BH, Wu SZ, Tew Jr JM: The relationship between the capillary structure and hemorrhage in gliomas. J Neurosurg 66: 536-541, 1987

    Google Scholar 

  35. Schechter J, Ahmad N, Elias K, Weiner R: Estrogen-induced tumors: changes in the vasculature in two strains of rat. Am J Anat 179: 315-323, 1987

    Google Scholar 

  36. Specht CS, McLean IW, Biscoe BW: Traumatic enucleation for posterior uveal melanoma. Am J Ophthalmol 110: 518-521, 1990

    Google Scholar 

  37. Meis-Kindblom JM, Kindblom LG: Angiosarcoma of soft tissue: a study of 80 cases. Am J Surg Pathol 22: 683-697, 1998

    Google Scholar 

  38. Cheng SY, Nagane M, Huang HS, Cavenee WK: Intracerebral tumor-associated hemorrhage caused by overexpression of the vascular endothelial growth factor isoforms VEGF121 and VEGF165 but not VEGF189. Proc Natl Acad Sci USA 94: 12 081-12 087, 1997

    Google Scholar 

  39. De Dobbeleer G, Godfrine S, Andre J, Ledoux M, De Maubeuge J: Clinically uninvolved skin in AIDS: evidence of atypical dermal vessels similar to early lesions observed in Kaposi's sarcoma. Ultrastructural study in four patients. J Cutan Pathol 14: 154-157, 1987

    Google Scholar 

  40. Bosman C, Bisceglia M, Quirke P: Ultrastructural study of Kaposi's sarcoma. Pathologica 88: 8-17, 1996

    Google Scholar 

  41. Thurston G, McLean JW, Rizen M, Baluk P, Haskell A, Murphy TJ, Hanahan D, McDonald DM: Cationic liposomes target angiogenic endothelial cells in tumors and chronic inflammation in mice. J Clin Invest 101: 1401-1413, 1998

    Google Scholar 

  42. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, Jain RK: Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 52: 6553-6560, 1992

    Google Scholar 

  43. Boucher Y, Leunig M, Jain RK: Tumor angiogenesis and interstitial hypertension. Cancer Res 56: 4264-4266, 1996

    Google Scholar 

  44. Gazit Y, Baish JW, Safabakhsh N, Leunig M, Baxter LT, Jain RK: Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation 4: 395-402, 1997

    Google Scholar 

  45. Mueller AJ, Freeman WR, Folberg R, Bartsch DU, Scheider A, Schaller U, Kampik A: Evaluation of microvascularization pattern visibility in human choroidal melanomas: comparison of confocal fluorescein with indocyanine green angiography. Graefe's Arch Clin Exp Ophthalmol 237: 448-456, 1999

    Google Scholar 

  46. Hanahan D, Christofori G, Naik P, Arbeit J: Transgenic mouse models of tumour angiogenesis: the angiogenic switch, its molecular controls, and prospects for preclinical therapeutic models. Eur J Cancer 32A: 2386-2393, 1996

    Google Scholar 

  47. Berger R, Albelda SM, Berd D, Ioffreda M, Whitaker D, Murphy GF: Expression of platelet-endothelial cell adhesion molecule-1 (PECAM-1) during melanoma-induced angiogenesis in vivo. J Cutan Pathol 20: 399-406, 1993

    Google Scholar 

  48. Burrows FJ, Derbyshire EJ, Tazzari PL, Amlot P, Gazdar AF, King SW, Letarte M, Vitetta ES, Thorpe PE: Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res 1: 1623-1634, 1995

    Google Scholar 

  49. Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR: Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 107: 233-235, 1995

    Google Scholar 

  50. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA: Definition of two angiogenic pathways by distinct alpha v integrins. Science 270: 1500-1502, 1995

    Google Scholar 

  51. Risau W: Mechanisms of angiogenesis. Nature 386: 671-674, 1997

    Google Scholar 

  52. Brekken RA, Huang X, King SW, Thorpe PE: Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res 58: 1952-1959, 1998

    Google Scholar 

  53. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994-1998, 1999

    Google Scholar 

  54. Valtola R, Salven P, Heikkila P, Taipale J, Joensuu H, Rehn M, Pihlajaniemi T, Weich H, deWaal R, Alitalo K: VEGFR-3 and its ligand VEGF-C are associated with angiogenesis in breast cancer. Am J Pathol 154: 1381-1390, 1999

    Google Scholar 

  55. Kim S, Bell K, Mousa SA, Varner JA: Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156: 1345-1362, 2000

    Google Scholar 

  56. Thorpe PE, Burrows FJ: Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Res Treat 36: 237-251, 1995

    Google Scholar 

  57. Arap W, Pasqualini R, Ruoslahti E: Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279: 377-380, 1998

    Google Scholar 

  58. Gong MC, Chang SS, Sadelain M, Bander NH, Heston WDW: Prostate-specific membrane antigen (PSMA)-specific monoclonal antibodies in the treatment of prostate and other cancers. Cancer Metastasis Rev 18: 483-490, 1999

    Google Scholar 

  59. Pasqualini R: Vascular targeting with phage peptide libraries. Q J Nucl Med 43: 159-162, 1999

    Google Scholar 

  60. Bredow S, Lewin M, Hofmann B, Marecos E, Weissleder R: Imaging of tumour neovasculature by targeting the TGF-beta binding receptor endoglin. Eur J Cancer 36: 675-681, 2000

    Google Scholar 

  61. Fonsatti E, Jekunen AP, Kairemo KJ, Coral S, Snellman M, Nicotra MR, Natali PG, Altomonte M, Maio M: Endoglin is a suitable target for efficient imaging of solid tumors: in vivo evidence in a canine mammary carcinoma model. Clin Cancer Res 6: 2037-2043, 2000

    Google Scholar 

  62. Koukourakis MI, Giatromanolaki A, Thorpe PE, Brekken RA, Sivridis E, Kakolyris S, Georgoulias V, Gatter KC, Harris AL: Vascular endothelial growth factor/KDR activated microvessel density versus CD31 standard microvessel density in non-small cell lung cancer. Cancer Res 60: 3088-3095, 2000

    Google Scholar 

  63. Miettinen M, Lindenmayer AE, Chaubal A: Endothelial cell markers CD31, CD34, and BNH9 antibody to H-and Y-antigens-evaluation of their specificity and sensitivity in the diagnosis of vascular tumors and comparison with von Willebrand factor. Mod Pathol 7: 82-90, 1994

    Google Scholar 

  64. DeYoung BR, Swanson PE, Argenyi ZB, Ritter JH, Fitzgibbon JF, Stahl DJ, Hoover W, Wick MR: CD31 immunoreactivity in mesenchymal neoplasms of the skin and subcutis: report of 145 cases and review of putative immunohistologic markers of endothelial differentiation. J Cutan Pathol 22: 215-222, 1995

    Google Scholar 

  65. Orchard GE, Zelger B, Jones EW, Jones RR: An immunocytochemical assessment of 19 cases of cutaneous angiosarcoma. Histopathology 28: 235-240, 1996

    Google Scholar 

  66. Hellwig SM, Damen CA, van Adrichem NP, Blijham GH, Groenewegen G, Griffioen AW: Endothelial CD34 is suppressed in human malignancies: role of angiogenic factors. Cancer Lett 120: 203-211, 1997

    Google Scholar 

  67. Kumar S, Ghellal A, Li C, Byrne G, Haboubi N, Wang JM, Bundred N: Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res 59: 856-861, 1999

    Google Scholar 

  68. de la Taille A, Katz AE, Bagiella E, Buttyan R, Sharir S, Olsson CA, Burchardt T, Ennis RD, Rubin MA: Microvessel density as a predictor of PSA recurrence after radical 119 prostatectomy. A comparison of CD34 and CD31. Am J Clin Pathol 113: 555-562, 2000

    Google Scholar 

  69. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA: Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157-1164, 1994

    Google Scholar 

  70. Rabb H, Barroso-Vicens E, Adams R, Pow-Sang J, Ramirez G: Alpha-V/beta-3 and alpha-V/beta-5 integrin distribution in neoplastic kidney. Am J Nephrol 16: 402-408, 1996

    Google Scholar 

  71. Liapis H, Adler LM, Wick MR, Rader JS: Expression of alpha(v)beta3 integrin is less frequent in ovarian epithelial tumors of low malignant potential in contrast to ovarian carcinomas. Hum Pathol 28: 443-449, 1997

    Google Scholar 

  72. Max R, Gerritsen RR, Nooijen PT, Goodman SL, Sutter A, Keilholz U, Ruiter DJ, De Waal RM: Immunohistochemical analysis of integrin alphavbeta3 expression on tumor-associated vessels of human carcinomas. Int J Cancer 71: 320-324, 1997

    Google Scholar 

  73. Gasparini G, Brooks PC, Biganzoli E, Vermeulen PB, Bonoldi E, Dirix LY, Ranieri G, Miceli R, Cheresh DA: Vascular integrin alpha(v)beta3: a new prognostic indicator in breast cancer. Clin Cancer Res 4: 2625-2634, 1998

    Google Scholar 

  74. Erdreich-Epstein A, Shimada H, Groshen S, Liu M, Metelitsa LS, Kim KS, Stins MF, Seeger RC, Durden DL: Integrins alpha(v)beta3 and alpha(v)beta5 are expressed by endothelium of high-risk neuroblastoma and their inhibition is associated with increased endogenous ceramide. Cancer Res 60: 712-721, 2000

    Google Scholar 

  75. Martin-Padura I, De Castellarnau C, Uccini S, Pilozzi E, Natali PG, Nicotra MR, Ughi F, Azzolini C, Dejana E, Ruco L: Expression of VE (vascular endothelial)-cadherin and other endothelial-specific markers in haemangiomas. J Pathol 175: 51-57, 1995

    Google Scholar 

  76. Lewalle JM, Bajou K, Desreux J, Mareel M, Dejana E, Noel A, Foidart JM: Alteration of interendothelial adherens junctions following tumor cell-endothelial cell interaction in vitro. Exp Cell Res 237: 347-356, 1997

    Google Scholar 

  77. McLean JW, Fox EA, Baluk P, Bolton PB, Haskell A, Pearlman P, Thurston G, Umemoto EY, McDonald DM: Organ-specific endothelial cell uptake of cationic liposome-DNA complexes in mice. Am J Physiol 273: H387-H404, 1997

    Google Scholar 

  78. Wang J, Yao A, Wang JY, Sung CC, Fink LM, Hardin JW, Hauer-Jensen M: cDNA cloning and sequencing, gene expression, and immunolocalization of thrombomodulin in the Sprague-Dawley rat. DNA Res 6: 57-62, 1999

    Google Scholar 

  79. Bohling T, Paetau A, Ekblom P, Haltia M: Distribution of endothelial and basement membrane markers in angiogenic tumors of the nervous system. Acta Neuropathol (Berl) 62: 67-72, 1983

    Google Scholar 

  80. Ordonez NG, Batsakis JG: Comparison of Ulex europaeus I lectin and factor VIII-related antigen in vascular lesions. Arch Pathol Lab Med 108: 129-132, 1984

    Google Scholar 

  81. Kuzu I, Bicknell R, Fletcher CD, Gatter KC: Expression of adhesion molecules on the endothelium of normal tissue vessels and vascular tumors. Lab Invest 69: 322-328, 1993

    Google Scholar 

  82. Maruno M, Yoshimine T, Isaka T, Kuroda R, Ishii H, Hayakawa T: Expression of thrombomodulin in astrocytomas of various malignancy and in gliotic and normal brains. J Neuro-Oncol 19: 155-160, 1994

    Google Scholar 

  83. Schadendorf D, Heidel J, Gawlik C, Suter L, Czarnetzki BM: Association with clinical outcome of expression of VLA-4 in primary cutaneous malignant melanoma as well as P-selectin and E-selectin on intratumoral vessels. J Natl Cancer Inst 87: 366-371, 1995

    Google Scholar 

  84. Suzuki Y, Ohtani H, Mizoi T, Takeha S, Shiiba K, Matsuno S, Nagura H: Cell adhesion molecule expression by vascular endothelial cells as an immune/inflammatory reaction in human colon carcinoma. Jpn J Cancer Res 86: 585-593, 1995

    Google Scholar 

  85. Mayer B, Spatz H, Funke I, Johnson JP, Schildberg FW: De novo expression of the cell adhesion molecule E-selectin on gastric cancer endothelium. Langenbecks Arch Surg 383: 81-86, 1998

    Google Scholar 

  86. Ye C, Kiriyama K, Mistuoka C, Kannagi R, Ito K, Watanabe T, Kondo K, Akiyama S, Takagi H: Expression of E-selectin on endothelial cells of small veins in human colorectal cancer. Int J Cancer 61: 455-460, 1995

    Google Scholar 

  87. Kraling BM, Razon MJ, Boon LM, Zurakowski D, Seachord C, Darveau RP, Mulliken JB, Corless CL, Bischoff J: E-selectin is present in proliferating endothelial cells in human hemangiomas. Am J Pathol 148: 1181-1191, 1996

    Google Scholar 

  88. Khatib AM, Kontogiannea M, Fallavollita L, Jamison B, Meterissian S, Brodt P: Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 59: 1356-1361, 1999

    Google Scholar 

  89. Cervello M, Virruso L, Lipani G, Giannitrapani L, Soresi M, Carroccio A, Gambino R, Sanfililippo R, Marasa L, Montalto G: Serum concentration of E-selectin in patients with chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. J Cancer Res Clin Oncol 126: 345-351, 2000

    Google Scholar 

  90. Farmer RW, Richtsmeier WJ, Scher RL: Identification of sialyl Lewis-x in squamous cell carcinoma of the head and neck. Head Neck 20: 726-731, 1998

    Google Scholar 

  91. Tang DG, Chen YQ, Newman PJ, Shi L, Gao X, Diglio CA, Honn KV: Identification of PECAM-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. J Biol Chem 268: 22 883-22 894, 1993

    Google Scholar 

  92. Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S et al.: Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res 55: 4196-4200, 1995

    Google Scholar 

  93. Ruck P, Xiao JC, Kaiserling E: Immunoreactivity of sinusoids in hepatoblastoma: an immunohistochemical study using lectin UEA-1 and antibodies against endothelium-associated antigens, including CD34. Histopathology 26: 451-455, 1995

    Google Scholar 

  94. Ordonez NG: Thrombomodulin expression in transitional cell carcinoma. Am J Clin Pathol 110: 385-390, 1998

    Google Scholar 

  95. Aroca F, Renaud W, Bartoli C, Bouvier-Labit C, Figarella-Branger D: Expression of PECAM-1/CD31 isoforms in human brain gliomas. J Neuro-Oncol 43: 19-25, 1999

    Google Scholar 

  96. Ogawa H, Yonezawa S, Maruyama I, Matsushita Y, Tezuka Y, Toyoyama H, Yanagi M, Matsumoto H, Nishijima H, Shimotakahara T, Aikou T, Sato E: Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett 149: 95-103, 2000

    Google Scholar 

  97. Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP: Circulating activated endothelial cells in sickle cell anemia. N Engl J Med 337: 1584-1590, 1997

    Google Scholar 

  98. Holden CA, Spaull J, Das AK, McKee PH, Jones EW: The histogenesis of angiosarcoma of the face and scalp: an immunohistochemical and ultrastructural study. Histopathology 11: 37-51, 1987

    Google Scholar 

  99. Burgio VL, Zupo S, Roncella S, Zocchi M, Ruco LP, Baroni CD: Characterization of EN4 monoclonal antibody: a reagent with CD31 specificity. Clin Exp Immunol 96: 170-176, 1994

    Google Scholar 

  100. Nakamura S, Muro H, Suzuki S, Sakaguchi T, Konno H, Baba S, Syed AS: Immunohistochemical studies on endothelial cell phenotype in hepatocellular carcinoma. Hepatology 26: 407-415, 1997

    Google Scholar 

  101. Kaaya EE, Parravicini C, Ordonez C, Gendelman R, Berti E, Gallo RC, Biberfeld P: Heterogeneity of spindle cells in Kaposi's sarcoma: comparison of cells in lesions and in culture. J Acquir Immune Defic Syndr Hum Retrovirol 10: 295-305, 1995

    Google Scholar 

  102. Leenstra S, Troost D, Das PK, Claessen N, Becker AE, Bosch DA: Endothelial cell marker PAL-E reactivity in brain tumor, developing brain, and brain disease. Cancer 72: 3061-3067, 1993

    Google Scholar 

  103. de la Torre M, Nygren P, Larsson R, Lindgren A, Tsuruo T, Bergh J: Expression of the 85-kd membrane protein in primary human breast cancer: relationship to hormone receptor levels, DNA ploidy, and tumor grade. Hum Pathol 26: 180-185, 1995

    Google Scholar 

  104. Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, Knudsen B, Bander NH: Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57: 3629-3634, 1997

    Google Scholar 

  105. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C: Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3: 81-85, 1997

    Google Scholar 

  106. Chang SS, O'Keefe DS, Bacich DJ, Reuter VE, Heston WD, Gaudin PB: Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin Cancer Res 5: 2674-2681, 1999

    Google Scholar 

  107. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB: Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 59: 3192-3198, 1999

    Google Scholar 

  108. Aird WC, Jahroudi N, Weiler-Guettler H, Rayburn HB, Rosenberg RD: Human von Willebrand factor gene sequences target expression to a subpopulation of endothelial cells in transgenic mice. Proc Natl Acad Sci USA 92: 4567-4571, 1995

    Google Scholar 

  109. Weiler-Guettler H, Aird WC, Husain M, Rayburn H, Rosenberg RD: Targeting of transgene expression to the vascular endothelium of mice by homologous recombination at the thrombomodulin locus. Circ Res 78: 180-187, 1996

    Google Scholar 

  110. Guillot PV, Guan J, Liu L, Kuivenhoven JA, Rosenberg RD, Sessa WC, Aird WC: A vascular bed-specific pathway. J Clin Invest 103: 799-805, 1999

    Google Scholar 

  111. McDonald DM: Endothelial gaps and permeability of venules in rat tracheas exposed to inflammatory stimuli. Am J Physiol 266: L61-L83, 1994

    Google Scholar 

  112. Folberg R, Pe'er J, Gruman LM, Woolson RF, Jeng G, Montague PR, Moninger TO, Yi H, Moore KC: The morphologic characteristics of tumor blood vessels as a marker of tumor progression in primary human uveal melanoma: a matched case-control study. Hum Pathol 23: 1298-1305, 1992

    Google Scholar 

  113. Folberg R, Rummelt V, Parys-Van Ginderdeuren R, Hwang T, Woolson RF, Pe'er J, Gruman LM: The prognostic value of tumor blood vessel morphology in primary uveal melanoma. Ophthalmology 100: 1389-1398, 1993

    Google Scholar 

  114. Luyten GP, Mooy CM, Post J, Jensen OA, Luider TM, de Jong PT: Metastatic uveal melanoma. A morphologic and immunohistochemical analysis. Cancer 78: 1967-1971, 1996

    Google Scholar 

  115. Nasu R, Kimura H, Akagi K, Murata T, Tanaka Y: Blood flow influences vascular growth during tumor angiogenesis. Br J Cancer 79: 780-786, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, D.M., Foss, A.J. Endothelial Cells of Tumor Vessels: Abnormal but not Absent. Cancer Metastasis Rev 19, 109–120 (2000). https://doi.org/10.1023/A:1026529222845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026529222845

Navigation