Skip to main content
Log in

Human Insulin Receptor Monoclonal Antibody Undergoes High Affinity Binding to Human Brain Capillaries in Vitro and Rapid Transcytosis Through the Blood–Brain Barrier in Vivo in the Primate

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The ability of monoclonal antibodies against the human insulin receptor to undergo transcytosis through the blood-brain barrier (BBB) was examined in the present studies.

Methods. Two murine monoclonal antibodies (MAb83-7 and MAb83-14) which bind different epitopes within the α-subunit of the human insulin receptor were examined using isolated human brain capillaries, frozen sections of primate brain, and in vivo pharmacokinetic studies in anesthetized Rhesus monkeys.

Results. Both antibodies strongly illuminated capillary endothelium in immunocytochemical analysis of frozen sections of brain from Rhesus monkey but not squirrel monkey. Both monoclonal antibodies, in the iodinated forms, bound to human brain microvessels, although the binding and endocytosis of MAb83-14 was approximately 10-fold greater than MAb83-7. The active binding of MAb83-14 to the human insulin receptor was paralleled by a very high rate of transport of this antibody through the BBB in vivo in two anesthetized Rhesus monkeys. The BBB permeability-surface area (PS) product in neocortical gray matter was 5.4 ± 0.6 µL/min/g, which is severalfold greater than previous estimates of the PS product for receptor-specific monoclonal antibody transport through the BBB. The brain delivery of MAb83-14 to the Rhesus monkey brain was high and 3.8 ± 0.4% of the injected dose was delivered to 100 g of brain at 3 hours after a single intravenous injection. In contrast, there was no brain uptake of the mouse IgG2a isotype control antibody.

Conclusions. These studies demonstrate an unexpected high degree of transcytosis of a monoclonal antibody through the primate BBB in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Brightman, M. W. Morphology of blood-brain interfaces. Exp. Eye Res. 25: 1–25, (1977).

    Google Scholar 

  2. Pardridge, W. M. Peptide Drug Delivery to the Brain. Raven Press/New York, 1–357, (1991).

    Google Scholar 

  3. Kumagai, A. K., J. Eisenberg, and W. M. Pardridge. Absorptive-mediated endocytosis of cationized albumin and a β-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport. J. Biol. Chem. 262: 15214–15219, (1987).

    Google Scholar 

  4. Friden, P. M., L. R. Walus, G. F. Musso, M. A. Taylor, B. Malfroy, and R. M. Starzyk. Anti-transferrin receptor antibody and antibody-drug conjugates cross the blood-brain barrier. Proc. Natl. Acad. Sci. USA 88: 4771–4775, (1991).

    Google Scholar 

  5. Pardridge, W. M., J. L. Buciak, and P. M. Friden. Selective transport of anti-transferrin receptor antibody through the blood-brain barrier in vivo. J. Pharmacol. Exp. Ther. 259: 66–70, (1991).

    Google Scholar 

  6. Bickel, U., T. Yoshikawa, E. M. Landaw, K. F. Faull, and W. M. Pardridge. Pharmacologic effects in vivo in brain by vector-mediated peptide drug delivery. Proc. Natl. Acad. Sci. USA 90: 2618–2622, (1993).

    Google Scholar 

  7. Friden, P. M., L. R. Walus, P. Watson, S. R. Doctrow, J. W. Kozarich, C. Backman, H. Bergman, B. Hoffer, F. Bloom, and A-C. Granholm. Blood-brain barrier penetration and in vivo activity of an NGF conjugate. Science 259: 373–377, (1993).

    Google Scholar 

  8. Jefferies, W. A., M. R. Brandon, S. V. Hunt, A. F. WIlliams, K. C. Gatter, and D. Y. Mason. Transferrin receptor on endothelium of brain capillaries. Nature 312: 162–163, (1984).

    Google Scholar 

  9. Fishman, J. B., J. B. Rubin, J. V. Handrahan, J. R. Connor, and R. E. Fine. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J. Neurosci. Res. 18: 199–304, (1987).

    Google Scholar 

  10. Pardridge, W. M., J. Eisenberg, and J. Yang. Human blood-brain barrier transferrin receptor. Metabolism 36: 892–895, (1987).

    Google Scholar 

  11. Jefferies, W. A., M. R. Brandon, A. F. Williams, and S. V. Hunt. Analysis of lymphopoietic stem cells with a monoclonal antibody to the rat transferrin receptor. Immunology 54: 333–341, (1985).

    Google Scholar 

  12. Pardridge, W. M., J. Eisenberg, and J. Yang. Human blood-brain barrier insulin receptor. J. Neurochem. 44: 1771–1778, (1985).

    Google Scholar 

  13. Duffy, K. R., and W. M. Pardridge. Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res. 420: 32–38, (1987).

    Google Scholar 

  14. Prigent, S. A., K. K. Stanley, and K. Siddle. Identification of epitopes on the human insulin receptor reacting with rabbit polyclonal antisera and mouse monoclonal antibodies. J. Biol. Chem. 265: 9970–9977, (1990).

    Google Scholar 

  15. Soos, M. A., K. Siddle, M. D. Baron, J. M. Heward, J. P. Luzio, J. Bellatin, and E. S. Lennox. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem. J. 235: 199–208, (1986).

    Google Scholar 

  16. Yoshikawa, T., and W. M. Pardridge. Biotin delivery to brain with a covalent conjugate of avidin and a monoclonal antibody to the transferrin receptor. J. Pharmacol. Exp. Ther. 263: 897–903, (1992).

    Google Scholar 

  17. Pardridge, W. M., J. L. Buciak, and T. Yoshikawa. Transport of recombinant CD4 through the rat blood-brain barrier. J. Pharmacol. Exp. Ther. 261: 1175–1180, (1992).

    Google Scholar 

  18. Triguero, D., J. B. Buciak, and W. M. Pardridge. Capillary depletion method for quantifying blood-brain barrier transcytosis of circulating peptides and plasma proteins. J. Neurochem. 54: 1882–1888, (1990).

    Google Scholar 

  19. Gibaldi, M. and D. Perrier. Pharmacokinetics. Marcel Dekker, Inc./New York, (1982).

    Google Scholar 

  20. Hsu, S., L. Raine, and H. Fanger. A comparative study of the peroxidase method and an avidin-biotin complex method for studying polypeptide hormone with radioimmunoassay antibodies. Am. J. Clin. Pathol. 75: 734–738, (1981).

    Google Scholar 

  21. Soos, M. A., R. M. O'Brien, N. P. J. Brindle, J. M. Stigter, A. K. Okamoto, J. Whittaker, and K. Siddle. Monoclonal antibodies to the insulin receptor mimic metabolic effects of insulin but do not stimulate receptor autophosphorylation in transfected NIH 3T3 fibroblasts. Proc. Natl. Acad. Sci. USA 86: 5217–5221, (1989).

    Google Scholar 

  22. Swindler, D. R., and J. Erwin, editors. Comparative Primate Biology, vol. 1 (Systematics, Evolution, and Anatomy). Alan R. Liss, Inc./New York, (1986).

    Google Scholar 

  23. Pardridge, W. M., J. Yang, J. Buciak, and W. W. Tourtellotte. Human brain microvascular DR antigen. J. Neurosci. Res. 23: 337–341, (1989).

    Google Scholar 

  24. Paccaud, J.-P., K. Siddle, and J.-L. Carpentier. Internalization of the human insulin receptor. The insulin-dependent pathway. J. Biol. Chem. 267: 13101–13106, (1992).

    Google Scholar 

  25. Sung, C. K., K. Y. Wong, C. C. Yip, D. M. Hawley, and I. D. Goldfine. Deletion of residues 485–599 from the human insulin receptor abolishes antireceptor antibody binding and influences tyrosine kinase activation. Molec. Endocrinol. 8: 315–324, (1993).

    Google Scholar 

  26. Kurose, T., M. Pashmforoush, Y. Yoshimasa, R. Carroll, G. P. Schwartz, G. T. Burke, P. G. Katsoyannis, and D. F. Steiner. Cross-linking of a B25 azidophenylalanine insulin derivative to the carboxyl-terminal region of the α-subunit of the insulin receptor. J. Biol. Chem. 269: 29190–29197, (1994).

    Google Scholar 

  27. Vorbrodt, A. W., Dobrogowska, D. H., and Lossinsky, A. S. Ultrastructural study on the interaction of insulin-albumin-gold complex with mouse brain microvascular endothelial cells. J. Neurocytol. 201–208, (1994).

  28. Lierse, W., and E. Horstmann. Quantitative anatomy of the cerebral vascular bed with especial emphasis on homogeneity and inhomogeneity in small parts of the gray and white matter. Acta Neurol. 14: 15–19, (1959).

    Google Scholar 

  29. Baskin, D. G., B. Brewitt, D. A. Davidson, E. Corp, T. Paquette, D. P. Filgewicz, T. K. Lewellen, M. K. Graham, S. G. Woods, and D. M. Dorsa. Quantitative autoradiographic evidence for insulin receptors in the choroid plexus of the rat brain. Diabetes 35: 246–249, (1986).

    Google Scholar 

  30. Woods, S. C., and D. Porte, Jr. Relationship between plasma and cerebrospinal fluid insulin levels in dogs. Am. J. Physiol. 233: E331–E334, (1977).

    Google Scholar 

  31. Poduslo, J. F., G. L. Curran, and C. T. Berg. Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc. Natl. Acad. Sci. USA 91: 5705–5709, (1994).

    Google Scholar 

  32. Kang, Y.-S., and W. M. Pardridge. Use of neutral-avidin improves pharmacokinetics and brain delivery of biotin bound to an avidin-monoclonal antibody conjugate. J. Pharmacol. Exp. Ther. 269: 344–350, (1994).

    Google Scholar 

  33. Bourne, G. H. The Rhesus Monkey, Vol. 1 (Anatomy and Physiology). Academic Press/New York, 6–10, (1975).

    Google Scholar 

  34. Kang, Y.-S., U. Bickel, and W. M. Pardridge. Pharmacokinetics and saturable blood-brain barrier transport of biotin bound to a conjugate of avidin and a monoclonal antibody to the transferrin receptor. Drug Metab. Disp. 22: 99–105, (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pardridge, W.M., Kang, YS., Buciak, J.L. et al. Human Insulin Receptor Monoclonal Antibody Undergoes High Affinity Binding to Human Brain Capillaries in Vitro and Rapid Transcytosis Through the Blood–Brain Barrier in Vivo in the Primate. Pharm Res 12, 807–816 (1995). https://doi.org/10.1023/A:1016244500596

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016244500596

Navigation