Skip to main content
Log in

The Urokinase-type Plasminogen Activator System in Prostate Cancer Metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Accumulated clinical and experimental evidence indicates that the urokinase-type plasminogen activator (uPA) and its regulators are causatively involved in the metastatic phenotype of many types of cancers. In the past couple of decades, investigation on the role of the uPA system in human prostate cancer (PC) has been intensified and has yielded valuable insights. This review summarizes recent advances made in several areas regarding the clinical relevance, the function and the molecular mechanisms of the uPA system in PC metastasis. A current consensus suggests that the uPA system promotes PC metastasis by mediating pericellular plasminogen activation. Towards the development of therapeutic strategies that specifically target uPA-mediated PC metastasis, several remaining issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Miyake H, Hara I, Yamanaka K, Arakawa S, Kamidono S: Elevation of urokinase-type plasminogen activator and its receptor densities as new predictors of disease progression and prognosis in men with prostate cancer. Int J Oncol 14: 535–541, 1999

    Google Scholar 

  2. Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S: Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 39: 123–129, 1999

    Google Scholar 

  3. McCabe NP, Angwafo FF III, Zaher A, Selman SH, Kouinche A, Jankun J: Expression of soluble urokinase plasminogen activator receptor may be related to outcome in prostate cancer patients. Oncol Rep 7: 879–882, 2000

    Google Scholar 

  4. Roldan AL, Cubellis MV, Masucci MT, Behrendt N, Lund LR, Dano K, Appella E, Blasi F: Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis. EMBO J 9, 1990

  5. Ploug M, Kjalke M, Ronne E, Weidle U, Hoyer-Hansen G, Dano K: Localization of the disulfide bonds in the NH2–terminal domain of the cellular receptor for human urokinase-type plasminogen activator. A domain structure belonging to a novel superfamily of glycolipid-anchored membrane proteins. J Biol Chem 268: 17539–17546, 1993

    Google Scholar 

  6. Andreasen PA, Kjoller L, Christensen L, Duffy MJ: The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 72: 1–22, 1997

    Google Scholar 

  7. Rickli EE: The activation mechanism of human plasminogen. Thromb Diath Haemorrh 34: 386–395, 1975

    Google Scholar 

  8. Robison AK, Collen D: Activation of the fibrinolytic system. Cardiol Clin 5: 13–19, 1987

    Google Scholar 

  9. Gurewich V: Fibrinolysis: an unfinished agenda. Blood Coagul Fibrinolysis 11: 401–408, 2000

    Google Scholar 

  10. Rabbani SA, Mazar AP: The role of the plasminogen activation system in angiogenesis and metastasis. Surg Oncol Clin N Am 10: 393–415, 2001

    Google Scholar 

  11. Pepper MS: Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol 21: 1104–1117, 2001

    Google Scholar 

  12. Legrand C, Polette M, Tournier JM, de Bentzmann S, Huet E, Monteau M, Birembaut P: uPA/plasm in systemmediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res 264: 326–336, 2001

    Google Scholar 

  13. Naldini L, Tamagnone L, Vigna E, Sachs M, Hartmann G, Birchmeier W, Daikuhara Y, Tsubouchi H, Blasi F, Comoglio PM: Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor. EMBO J 11: 4825–4833, 1992

    Google Scholar 

  14. Miyazawa K, Wang Y, Minoshima S, Shimizu N, Kitamura N: Structural organization and chromosomal localization of the human hepatocyte growth factor activator gene-phylogenetic and functional relationship with blood coagulation factor XII, urokinase, and tissue-type plasminogen activator. Eur J Biochem 258: 355–361, 1998

    Google Scholar 

  15. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, Enghild J, Kwaan HC, Lee F, Kramer RA, Volpert O, Bouck N, Soff GA: The mechanism of cancermediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proc Natl Acad Sci USA 94: 10868–10872, 1997

    Google Scholar 

  16. O'Reilly MS: Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. EXS 79: 273–294, 1997

    Google Scholar 

  17. Soff GA: Angiostat in and angiostatin-related proteins. Cancer Metastasis Rev 19: 97–107, 2000

    Google Scholar 

  18. Rijken DC: Plasminogen activators and plasminogen activator inhibitors: biochemical aspects. Baillieres Clin Haematol 8: 291–312, 1995

    Google Scholar 

  19. Ossowski L, Aguirre-Ghiso JA: Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 12: 613–620, 2000

    Google Scholar 

  20. Preissner KT, Kanse SM, May AE: Urokinase receptor: a molecular organizer in cellular communication. Curr Opin Cell Biol 12: 621–628, 2000

    Google Scholar 

  21. Schwartz BS, Espana F: Two distinct urokinase-serp in interactions regulate the initiation of cell surfaceassociated plasminogen activation. J Biol Chem 274: 15278–15283, 1999

    Google Scholar 

  22. Ellis V, Wun TC, Behrendt N, Ronne E, Dano K: Inhibition of receptor-bound urokinase by plasminogen-activator inhibitors. J Biol Chem 265: 9904–9908, 1990

    Google Scholar 

  23. Schwartz BS: Differential inhibition of soluble and cell surface receptor-bound single-chain urokinase by plasminogen activator inhibitor type 2. A potential regulatory mechanism. J Biol Chem 269: 8319–8323, 1994

    Google Scholar 

  24. McGowen R, Biliran H Jr, Sager R, Sheng S: The surface of prostate carcinoma DU145 cells mediates the inhibition of urokinase-type plasminogen activator by maspin. Cancer Res 60: 4771–4778, 2000

    Google Scholar 

  25. Yamamoto M, Sawaya R, Mohanam S, Rao VH, Bruner JM, Nicolson GL, Ohshima K, Rao JS: Activities, localizations, and roles of serine proteases and their inhibitors in human brain tumor progression. J Neuro-Oncol 22: 139–151, 1994

    Google Scholar 

  26. Engh RA, Huber R, Bode W, Schulze AJ: Divining the serpin inhibition mechanism: a suicide substrate 'springe'? Trends Biotechnol 13: 503–510, 1995

    Google Scholar 

  27. Pratt CW, Church FC: General features of the heparinbinding serpins antithrombin, heparin cofactor II and protein C inhibitor. Blood Coagul Fibrinolysis 4: 479–490, 1993

    Google Scholar 

  28. Salonen EM, Vaheri A, Pollanen J, Stephens R, Andreasen P, Mayer M, Dano K, Gailit J, Ruoslahti E: Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin. J Biol Chem 264: 6339–6343, 1989

    Google Scholar 

  29. Deng G, Royle G, Seiffert D, Loskutoff DJ: The PAI-1/vitronectin interaction: two cats in a bag? Thromb Haemost 74: 66–70, 1995

    Google Scholar 

  30. Van Veldhuizen PJ, Sadasivan R, Cherian R, Wyatt A: Urokinase-type plasminogen activator expression in human prostate carcinomas. Am J Med Sci 312: 8–11, 1996

    Google Scholar 

  31. Kirchheimer JC, Pfluger H, Ritschl P, Hienert G, Binder BR: Plasminogen activator activity in bone metastases of prostatic carcinomas as compared to primary tumors. Invasion Metastasis 5: 344–355, 1985

    Google Scholar 

  32. Soff GA, Sanderowitz J, Gately S, Verrusio E, Weiss I, Brem S, Kwaan HC: Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest 96: 2593–2600, 1995

    Google Scholar 

  33. Festuccia C, Vincentini C, di Pasquale AB, Aceto G, Zazzeroni F, Miano L, Bologna M: Plasminogen activator activities in short-term tissue cultures of benign prostatic hyperplasia and prostatic carcinoma. Oncol Res 7: 131–138, 1995

    Google Scholar 

  34. Quax PH, de Bart AC, Schalken JA, Verheijen JH: Plasminogen activator and matrix metalloproteinase production and extracellular matrix degradation by rat prostate cancer cells in vitro: correlation with metastatic behavior in vivo. Prostate 32: 196–204, 1997

    Google Scholar 

  35. Festuccia C, Giunciuglio D, Guerra F, Villanova I, Angelucci A, Manduca P, Teti A, Albini A, Bologna M: Osteoblasts modulate secretion of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in human prostate cancer cells promoting migration and matrigel invasion. Oncol Res 11: 17–31, 1999

    Google Scholar 

  36. Rabbani SA: Metalloproteases and urokinase in angiogenesis and tumor progression. In Vivo 12: 135–142, 1998

    Google Scholar 

  37. Hollas W, Hoosein N, Chung LW, Mazar A, Henkin J, Kariko K, Barnathan ES, Boyd D: Expression of urokinase and its receptor in invasive and non-invasive prostate cancer cell lines. Thromb Haemost 68: 662–666, 1992

    Google Scholar 

  38. Lyon PB, See WA, Xu Y, Cohen MB: Diversity and modulation of plasminogen activator activity in human prostate carcinoma cell lines. Prostate 27: 179–186, 1995

    Google Scholar 

  39. Festuccia C, Dolo V, Guerra F, Violini S, Muzi P, Pavan A, Bologna M: Plasminogen activator system modulates invasive capacity and proliferation in prostatic tumor cells. Clin Exp Metastasis 16: 513–528, 1998

    Google Scholar 

  40. Pentyala SN, Whyard TC, Waltzer WC, Meek AG, Hod Y: Androgen induction of urokinase gene expression in LNCaP cells is dependent on their interaction with the extracellular matrix. Cancer Lett 130: 121–126, 1998

    Google Scholar 

  41. Helenius MA, Saramaki OR, Linja MJ, Tammela TL, Visakorpi T: Amplification of urokinase gene in prostate cancer. Cancer Res 61: 5340–5344, 2001

    Google Scholar 

  42. Gavrilov D, Kenzior O, Evans M, Calaluce R, Folk WR: Expression of urokinase plasminogen activator and receptor in conjunction with the ets family and AP-1 complex transcription factors in high grade prostate cancers. Eur J Cancer 37: 1033–1040, 2001

    Google Scholar 

  43. D'Orazio D, Besser D, Marksitzer R, Kunz C, Hume DA, Kiefer B, Nagamine Y: Cooperation of two PEA3/AP1 sites in uPA gene induction by TPA and FGF-2. Gene 201: 179–187, 1997

    Google Scholar 

  44. Desruisseau S, Ghazarossian-Ragni E, Chinot O, Martin PM: Divergent effect of TGFbeta1 on growth and proteolytic modulation of human prostatic-cancer cell lines. Int J Cancer 66: 796–801, 1996

    Google Scholar 

  45. Wilson MJ, Ludowese C, Sinha AA, Estensen RD: Effects of castration on plasminogen activator activities and plasminogen activator inhibitor type 1 in the rat ventral prostate. Prostate 28: 239–250, 1996

    Google Scholar 

  46. Xing RH, Rabbani SA: Regulation of urokinase production by androgens in human prostate cancer cells: effect on tumor growth and metastases in vivo. Endocrinology 140, 1999

  47. Ohta S, Niiya K, Sakuragawa N, Fuse H: Induction of urokinase-type plasminogen activator by lipopolysaccharide in PC-3 human prostatic cancer cells. Thromb Res 97: 343–347, 2000

    Google Scholar 

  48. Yoshida E, Verrusio EN, Mihara H, Oh D, Kwaan HC: Enhancement of the expression of urokinase-type plasminogen activator from PC-3 human prostate cancer cells by thrombin. Cancer Res 54: 3300–3304, 1994

    Google Scholar 

  49. Festuccia C, Guerra F, D'Ascenzo S, Giunciuglio D, Albini A, Bologna M: In vitro regulation of pericellular proteolysis in prostatic tumor cells treated with bombesin. Int J Cancer 75: 418–431, 1998

    Google Scholar 

  50. Angelloz-Nicoud P, Binoux M: Autocrine regulation of cell proliferation by the insulin-like growth factor (IGF) and IGF binding protein-3 protease system in a human prostate carcinoma cell line (PC-3). Endocrinology 136: 5485–5492, 1995

    Google Scholar 

  51. Festuccia C, Angelucci A, Gravina GL, Villanova I, Teti A, Albini A, Bologna M, Abini A: Osteoblast-derived TGFbeta1 modulates matrix degrading protease expression and activity in prostate cancer cells. Int J Cancer 85: 407–415, 2000

    Google Scholar 

  52. Festuccia C, Bologna M, Gravina GL, Guerra F, Angelucci A, Villanova I, Millimaggi D, Teti A: Osteoblast conditioned media contain TGF-beta1 and modulate the migration of prostate tumor cells and their interactions with extracellular matrix components. Int J Cancer 81: 395–403, 1999

    Google Scholar 

  53. Machtens S, Serth J, Bokemeyer C, Bathke W, Minssen A, Kollmannsberger C, Hartmann J, Knuchel R, Kondo M, Jonas U, Kuczyk M: Expression of the p53 and Maspin protein in primary prostate cancer: correlation with clinical features. Int J Cancer 95: 337–342, 2001

    Google Scholar 

  54. Zou Z, Gao C, Nagaich AK, Connell T, Saito S, Moul JW, Seth P, Appella E, Srivastava S: p53 regulates the expression of the tumor suppressor gene maspin. J Biol Chem 275: 6051–6054, 2000

    Google Scholar 

  55. Zhang M, Magit D, Sager R: Expression of masp in in prostate cells is regulated by a positive ets element and a negative hormonal responsive element site recognized by androgen receptor. Proc Natl Acad Sci USA 94: 5673–5678, 1997

    Google Scholar 

  56. Jankun J, Keck RW, Skrzypczak-Jankun E, Swiercz R: Inhibitors of urokinase reduce size of prostate cancer xenografts in severe combined immunodeficient mice. Cancer Res 57: 559–563, 1997

    Google Scholar 

  57. Plas E, Carroll VA, Jilch R, Simak R, Mihaly J, Melchior S, Thuroff JW, Binder BR, Pfluger H: Variations of components of the plasminogen activation system with the cell cycle in benign prostate tissue and prostate cancer. Cytometry 46: 184–189, 2001

    Google Scholar 

  58. Kwaan HC, Wang J, Svoboda K, Declerck PJ: Plasminogen activator inhibitor 1 may promote tumour growth through inhibition of apoptosis. Br J Cancer 82: 1702–1708, 2000

    Google Scholar 

  59. Achbarou A, Kaiser S, Tremblay G, Ste-Marie LG, Brodt P, Goltzman D, Rabbani SA: Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res 54: 2372–2377, 1994

    Google Scholar 

  60. Rabbani SA, Harakidas P, Davidson DJ, Henkin J, Mazar AP: Prevention of prostate-cancer metastasis in vivo by a novel synthetic inhibitor of urokinase-type plasminogen activator (uPA). Int J Cancer 63: 840–845, 1995

    Google Scholar 

  61. Evans CP, Elfman F, Parangi S, Conn M, Cunha G, Shuman MA: Inhibition of prostate cancer neovascularization and growth by urokinase-plasminogen activator receptor blockade. Cancer Res 57: 3594–3599, 1997

    Google Scholar 

  62. Crowley CW, Cohen RL, Lucas BK, Liu G, Shuman MA, Levinson AD: Prevention of metastasis by inhibition of the urokinase receptor. Proc Natl Acad Sci USA 90: 5021–5025, 1993

    Google Scholar 

  63. Allen BJ, Rizvi S, Li Y, Tian Z, Ranson M: In vitro and preclinical targeted alpha therapy for melanoma, breast, prostate and colorectal cancers. Crit Rev Oncol Hematol 39: 139–146, 2001

    Google Scholar 

  64. Swiercz R, Keck RW, Skrzypczak-Jankun E, Selman SH, Jankun J: Recombinant PAI-1 inhibits angiogenesis and reduces size of LNCaP prostate cancer xenografts in SCID mice. Oncol Rep 8: 463–470, 2001

    Google Scholar 

  65. Zhang M, Volpert O, Shi YH, Bouck N: Masp in is an angiogenesis inhibito. Nat Med 6: 196–199, 2000

    Google Scholar 

  66. Sheng S, Carey J, Seftor EA, Dias L, Hendrix MJ, Sager R: Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proc Natl Acad Sci USA 93: 1 1669–11674, 1996

    Google Scholar 

  67. Yebra M, Goretzki L, Pfeifer M, Mueller BM: Urokinasetype plasminogen activator binding to its receptor stimulates tumor cell migration by enhancing integrin-mediated signal transduction. Exp Cell Res 250: 231–240, 1999

    Google Scholar 

  68. Koshelnick Y, Ehart M, Hufnagl P, Heinrich PC, Binder BR: Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem 272: 28563–28567, 1997

    Google Scholar 

  69. Dumler I, Kopmann A, Weis A, Mayboroda OA, Wagner K, Gulba DC, Haller H: Urokinase activates the Jak/Stat signal transduction pathway in human vascular endothelial cells. Arterioscler Thromb Vasc Biol 19: 290–297, 1999

    Google Scholar 

  70. Nguyen DH, Hussaini IM, Gonias SL: Binding of urokinase-type plasminogen activator to its receptor in MCF-7 cells activates extracellular signal-regulated kinase 1 and 2 which is required for increased cellular motility. J Biol Chem 273: 8502–8507, 1998

    Google Scholar 

  71. Wei Y, Yang X, Liu Q, Wilkins JA, Chapman HA: Arole for caveol in and the urokinase receptor in integrin-mediated adhesion and signaling. J Cell Biol 144: 1285–1294, 1999

    Google Scholar 

  72. Nguyen DH, Catling AD, Webb DJ, Sankovic M, Walker LA, Somlyo AV, Weber MJ, Gonias SL: Myos in light chain kinase functions downstream of Ras/ERK to promote migration of urokinase-type plasminogen activator-stimulated cells in an integrin-selective manner. J Cell Biol 146: 149–164, 1999

    Google Scholar 

  73. Degryse B, Orlando S, Resnati M, Rabbani SA, Blasi F: Urokinase/urokinase receptor and vitronectin/ alpha(v)beta(3) integrin induce chemotaxis and cytoskeleton reorganization through different signaling pathways. Oncogene 20: 2032–2043, 2001

    Google Scholar 

  74. Xing RH, Rabbani SA: Regulation of urokinase production by androgens in human prostate cancer cells: effect on tumor growth and metastases in vivo. Endocrinology 140: 4056–4064, 1999

    Google Scholar 

  75. Webber MM, Bello-DeOcampo D, Quader S, Deocampo ND, Metcalfe WS, Sharp RM: Modulation of the malignant phenotype of human prostate cancer cells by N-(4–hydroxyphenyl)retinamide (4–HPR). Clin Exp Metastasis 17: 255–263, 1999

    Google Scholar 

  76. Webber MM, Waghray A: Urokinase-mediated extracellular matrix degradation by human prostatic carcinoma cells and its inhibition by retinoic acid. Clin Cancer Res 1: 755–761, 1995

    Google Scholar 

  77. Waghray A, Webber MM: Retinoic acid modulates extracellular urokinase-type plasminogen activator activity in DU-145 human prostatic carcinoma cells. Clin Cancer Res 1: 747–753, 1995

    Google Scholar 

  78. Kim JH, Tanabe T, Chodak GW, Rukstalis DB: In vitro anti-invasive effects of N-(4–hydroxyphenyl)-retinamide on human prostatic adenocarcinoma. Anticancer Res 15: 1429–1434, 1995

    Google Scholar 

  79. Tanabe T: Effects of N-(4–hydroxyphenyl) retinamide on urokinase-type plasminogen activator and plasminogen activator inhibitor-1 in prostate adenocarcinoma cell lines. Hiroshima J Med Sci 49: 67–72, 2000

    Google Scholar 

  80. Igawa M, Tanabe T, Chodak GW, Rukstalis DB: N-(4–hydroxyphenyl) retinamide induces cell cycle specific growth inhibition in PC3 cells. Prostate 24: 299–305, 1994

    Google Scholar 

  81. Joseph IB, Isaacs JT: Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents. J Natl Cancer Inst 90: 1648–1653, 1998

    Google Scholar 

  82. Festuccia C, Teti A, Bianco P, Guerra F, Vicentini C, Tennina R, Villanova I, Sciortino G, Bologna M: Human prostatic tumor cells in culture produce growth and differentiation factors active on osteoblasts: a newbiological and clinical parameter for prostatic carcinoma. Oncol Res 9: 419–431, 1997

    Google Scholar 

  83. Goltzman D: Mechanisms of the development of osteoblastic metastases. Cancer 80: 1581–1587, 1997

    Google Scholar 

  84. Konecny G, Untch M, Arboleda J, Wilson C, Kahlert S, Boettcher B, Felber M, Beryt M, Lude S, Hepp H, Slamon D, Pegram M: Her-2/neu and urokinase-type plasminogen activator and its inhibitor in breast cancer. Clin Cancer Res 7: 2448–2457, 2001

    Google Scholar 

  85. Konecny G, Untch M, Pihan A, Kimmig R, Gropp M, Stieber P, Hepp H, Slamon D, Pegram M: Association of urokinase-type plasminogen activator and its inhibitor with disease progression and prognosis in ovarian cancer. Clin Cancer Res 7: 1743–1749, 2001

    Google Scholar 

  86. Miseljic S, Galandiuk S, Myers SD, Wittliff JL: Expression of urokinase-type plasminogen activator and plasminogen activator inhibitor in colon disease. J Clin Lab Anal 9: 413–417, 1995

    Google Scholar 

  87. Pedersen AN, Christensen IJ, Stephens RW, Briand P, Mouridsen HT, Dano K, Brunner N: The complex between urokinase and its type-1 inhibitor in primary breast cancer: relation to survival. Cancer Res 60: 6927–6934, 2000

    Google Scholar 

  88. Pedersen AN, Hoyer-Hansen G, Brunner N, Clark GM, Larsen B, Poulsen HS, Dano K, Stephens RW: The complex between urokinase plasminogen activator and its type-1 inhibitor in breast cancer extracts quantitated by ELISA. J Immunol Methods 203: 55–65, 1997

    Google Scholar 

  89. Bajou K, Noel A, Gerard RD, Masson V, Brunner N, Holst-Hansen C, Skobe M, Fusenig NE, Carmeliet P, Collen D, Foidart JM: Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat Med 4: 923–928, 1998

    Google Scholar 

  90. Gutierrez LS, Schulman A, Brito-Robinson T, Noria F, Ploplis VA, Castellino FJ: Tumor development is retarded in mice lacking the gene for urokinase-type plasminogen activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res 60: 5839–5847, 2000

    Google Scholar 

  91. Stephens RW, Brunner N, Janicke F, Schmitt M: The urokinase plasminogen activator system as a target for prognostic studies in breast cancer. Breast Cancer Res Treat 52: 99–111, 1998

    Google Scholar 

  92. Chambers SK, Ivins CM, Carcangiu ML: Expression of plasminogen activator inhibitor-2 in epithelial ovarian cancer: a favorable prognostic factor related to the actions of CSF-1. Int J Cancer 74: 571–575, 1997

    Google Scholar 

  93. Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R: Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science 263: 526–529, 1994

    Google Scholar 

  94. Reddy KB, McGowen R, Schuger L, Visscher D, Sheng S: Maspin expression inversely correlates with breast tumor progression in MMTV/TGF-alpha transgenic mouse model. Oncogene 20: 6538–6543, 2001

    Google Scholar 

  95. Xia W, Lau YK, Hu MC, Li L, Johnston DA, Sheng Sj, El-Naggar A, Hung MC: High tumoral masp in expression is associated with improved survival of patients with oral squamous cell carcinoma. Oncogene 19: 2398–2403, 2000

    Google Scholar 

  96. Martin KJ, Kritzman BM, Price LM, Koh B, Kwan CP, Zhang X, Mackay A, O'Hare MJ, Kaelin CM, Mutter GL, Pardee AB, Sager R: Linking gene expression patterns to therapeutic groups in breast cancer. Cancer Res 60: 2232–2238, 2000.

    Google Scholar 

  97. Nykjaer A, Petersen CM, Moller B, Jensen PH, Moestrup SK, Holtet TL, Etzerodt M, Thogersen HC, Munch M, Andreasen PA: Purified alpha 2–macroglobul in receptor/LDL receptor-related protein binds urokinase plasminogen activator inhibitor type-1 complex. Evidence that the alpha 2–macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem 267: 14543–14546, 1992

    Google Scholar 

  98. Kounnas MZ, Henkin J, Argraves WS, Strickland DK: Low density lipoprotein receptor-related protein/alpha 2–macroglobulin receptor mediates cellular uptake of prourokinase. J Biol Chem 268: 21862–21867, 1993

    Google Scholar 

  99. Zhang L, Strickland DK, Cines DB, Higazi AA: Regulation of single cha in urokinase binding, internalization, and degradation by a plasminogen activator inhibitor 1–derived peptide. J Biol Chem 272: 27053–27057, 1997

    Google Scholar 

  100. Degryse B, Sier CF, Resnati M, Conese M, Blasi F: PAI-1 inhibits urokinase-induced chemotaxis by internalizing the urokinase receptor. FEBS Lett 505: 249–254, 2001

    Google Scholar 

  101. Biliran H Jr, Sheng S: Pleiotrophic Inhibition of Pericellular Urokinase-type Plasminogen Activator System by Endogenous Tumor Suppressive Maspin. Cancer Res (in press), 2001

  102. Engelholm LH, Nielsen BS, Dano K, Behrendt N: The urokinase receptor associated prote in (uPARAP/endo180): a novel internalization receptor connected to the plasminogen activation system. Trends Cardiovasc Med 11: 7–13, 2001

    Google Scholar 

  103. Stahl A, Mueller BM: The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae. J Cell Biol 129: 335–344, 1995

    Google Scholar 

  104. Lu H, Mabilat C, Yeh P, Guitton JD, Li H, Pouchelet M, Shoevaert D, Legrand Y, Soria J, Soria C: Blockage of urokinase receptor reduces in vitro the motility and the deformability of endothelial cells. FEBS Lett 380: 21–24, 1996

    Google Scholar 

  105. Masucci MT, Pedersen N, Blasi F: A soluble, ligand binding mutant of the human urokinase plasminogen activator receptor. J Biol Chem 266: 8655–8658, 1991

    Google Scholar 

  106. Kobayashi H, Ohi H, Shinohara H, Sugimura M, Fujii T, Terao T, Schmitt M, Goretzki L, Chucholowski N, Janicke F: Saturation of tumour cell surface receptors for urokinase-type plasminogen activator by amino-terminal fragment and subsequent effect on reconstituted basement membranes invasion. Br J Cancer 67: 537–544, 1993

    Google Scholar 

  107. Slack JK, Adams RB, Rovin JD, Bissonette EA, Stoker CE, Parsons JT: Alterations in the focal adhesion kinase/Src signal transduction pathway correlate with increased migratory capacity of prostate carcinoma cells. Oncogene 20: 1152–1163, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, S. The Urokinase-type Plasminogen Activator System in Prostate Cancer Metastasis. Cancer Metastasis Rev 20, 287–296 (2001). https://doi.org/10.1023/A:1015539612576

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015539612576

Navigation