Skip to main content

Advertisement

Log in

BTG2 inhibits the proliferation, invasion, and apoptosis of MDA-MB-231 triple-negative breast cancer cells

  • Research Article
  • Published:
Tumor Biology

Abstract

The purposes of this study were to investigate the effects of B cell translocation gene 2 (BTG2) on the proliferation, apoptosis, and invasion of triple-negative breast cancer and to provide an experimental basis for the future treatment of human triple-negative breast cancer. A pcDNA3.1-BTG2 eukaryotic expression vector was constructed and transfected into the MDA-MB-231 human triple-negative breast cancer cell line using lipofection. Then, relevant changes in the biological characteristics of the BTG2-expressing cell line were analyzed using MTT (tetrazolium blue), flow cytometry, and Transwell invasion chamber assays. Additionally, the effects of BTG2 expression on cyclin D1, caspase 3, and matrix metalloproteinases 1/2 (MMP-1/-2) expression were analyzed. Cell proliferation was significantly lower in the pcDNA3.1-BTG2-transfected group compared to the empty vector and blank control groups (p < 0.05). There was no significant difference between the empty vector and blank control groups. FCM results demonstrated that there were significantly more cells in the G1 phase of the cell cycle and fewer S phase cells in the pcDNA3.1-BTG2 group than in the empty vector and blank control groups (p < 0.05). Additionally, the proportion of cells that migrated across the membrane was significantly lower in the pcDNA3.1-BTG2 group than in the empty vector and blank control groups (p < 0.05). Cyclin D1 and MMP-1/-2 expression were significantly lower in MDA-MB-231 cells transfected with pcDNA3.1-BTG2 as compared to the empty vector and blank control groups (p < 0.05). Caspase 3 expression was significantly higher in MDA-MB-231 cells from the pcDNA3.1-BTG2 group compared to the empty vector and blank control groups (p < 0.05). In conclusion, BTG2 may inhibit MDA-MB-231 proliferation and promote apoptosis. Additionally, BTG2 may also inhibit the invasion of MDA-MB-231 human triple-negative breast cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist. 2011;16 Suppl 1:61–70.

    Article  PubMed  Google Scholar 

  2. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100(14):8418–23.

    Article  PubMed  CAS  Google Scholar 

  3. de Ruijter TC, Veeck J, de Hoon JP, van Engeland M, Tjan-Heijnen VC. Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol. 2011;137(2):183–92.

    Article  PubMed  CAS  Google Scholar 

  4. Daemen A. An update on the genomic landscape of breast cancer: new opportunity for personalized therapy? Transl Cancer Res. 2012;1(4):279–82.

    Google Scholar 

  5. Chirappapha P, Lohsiriwat V, Kongdan Y, Lertsithichai P, Sukarayothin T, Supsamutchai C, et al. Sentinel lymph node biopsy under local anesthesia in patients with breast cancer. Gland Surg. 2012;1(3):151–5.

    Google Scholar 

  6. Rashid OM, Takabe K. The evolution of the role of surgery in the management of breast cancer lung metastasis. J Thorac Dis. 2012;4(4):420–4.

    PubMed  Google Scholar 

  7. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California Cancer Registry. Cancer. 2007;109(9):1721–8.

    Article  PubMed  Google Scholar 

  8. Dong X, Alpaugh KR, Cristofanilli M. Circulating tumor cells (CTCs) in breast cancer: a diagnostic tool for prognosis and molecular analysis. Chin J Cancer Res. 2012;24(4):388–98.

    Article  PubMed  CAS  Google Scholar 

  9. Reddy KB. Triple-negative breast cancers: an updated review on treatment options. Curr Oncol. 2011;18(4):e173–9.

    Article  PubMed  CAS  Google Scholar 

  10. Cleator S, Heller W, Coombes RC. Triple-negative breast cancer: therapeutic options. Lancet Oncol. 2007;8(3):235–44.

    Article  PubMed  Google Scholar 

  11. Rakha EA, El-Sayed ME, Green AR, Lee AH, Robertson JF, Ellis IO. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109(1):25–32.

    Article  PubMed  CAS  Google Scholar 

  12. Dawood S, Broglio K, Esteva FJ, Yang W, Kau SW, Islam R, et al. Survival among women with triple receptor-negative breast cancer and brain metastases. Ann Oncol. 2009;20(4):621–7.

    Article  PubMed  CAS  Google Scholar 

  13. Niwinska A, Olszewski W, Murawska M, Pogoda K. Triple-negative breast cancer with brain metastases: a comparison between basal-like and non-basal-like biological subtypes. J Neurooncol. 2011;105(3):547–53.

    Article  PubMed  CAS  Google Scholar 

  14. Al-Mulla F, Bitar MS, Al-Maghrebi M, Behbehani AI, Al-Ali W, Rath O, et al. Raf kinase inhibitor protein RKIP enhances signaling by glycogen synthase kinase-3beta. Cancer Res. 2011;71(4):1334–43.

    Article  PubMed  CAS  Google Scholar 

  15. Shek DT, Lee TY. Perceived parental control processes in Chinese adolescents: implications for positive youth development programs in Hong Kong. Int J Adolesc Med Health. 2006;18(3):505–19.

    PubMed  Google Scholar 

  16. Zhang L, Huang H, Wu K, Wang M, Wu B. Impact of BTG2 expression on proliferation and invasion of gastric cancer cells in vitro. Mol Biol Rep. 2010;37(6):2579–86.

    Article  PubMed  CAS  Google Scholar 

  17. Boulay G, Malaquin N, Loison I, Foveau B, Van Rechem C, Rood BR, et al. Loss of hypermethylated in cancer 1 (HIC1) in breast cancer cells contributes to stress induced migration and invasion through beta-2 adrenergic receptor (ADRB2) misregulation. J Biol Chem. 2012;287(8):5379–89.

    Article  PubMed  CAS  Google Scholar 

  18. Willis L, Alarcon T, Elia G, Jones JL, Wright NA, Tomlinson IP, et al. Breast cancer dormancy can be maintained by small numbers of micrometastases. Cancer Res. 2010;70(11):4310–7.

    Article  PubMed  CAS  Google Scholar 

  19. Rouault JP, Falette N, Guehenneux F, Guillot C, Rimokh R, Wang Q, et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat Genet. 1996;14(4):482–6.

    Article  PubMed  CAS  Google Scholar 

  20. Lim IK. TIS21 (/BTG2/PC3) as a link between ageing and cancer: cell cycle regulator and endogenous cell death molecule. J Cancer Res Clin Oncol. 2006;132(7):417–26.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang Z, Chen C, Wang G, Yang Z, San J, Zheng J, et al. Aberrant expression of the p53-inducible antiproliferative gene BTG2 in hepatocellular carcinoma is associated with overexpression of the cell cycle-related proteins. Cell Biochem Biophys. 2011;61(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  22. Horvilleur E, Bauer M, Goldschneider D, Mergui X, de la Motte A, Benard J, et al. p73alpha isoforms drive opposite transcriptional and post-transcriptional regulation of MYCN expression in neuroblastoma cells. Nucleic Acids Res. 2008;36(13):4222–32.

    Article  PubMed  CAS  Google Scholar 

  23. Boiko AD, Porteous S, Razorenova OV, Krivokrysenko VI, Williams BR, Gudkov AV. A systematic search for downstream mediators of tumor suppressor function of p53 reveals a major role of BTG2 in suppression of Ras-induced transformation. Genes Dev. 2006;20(2):236–52.

    Article  PubMed  CAS  Google Scholar 

  24. Horiuchi M, Takeuchi K, Noda N, Muroya N, Suzuki T, Nakamura T, et al. Structural basis for the antiproliferative activity of the Tob-hCaf1 complex. J Biol Chem. 2009;284(19):13244–55.

    Article  PubMed  CAS  Google Scholar 

  25. Duriez C, Moyret-Lalle C, Falette N, El-Ghissassi F, Puisieux A. BTG2, its family and its tutor. Bull Cancer. 2004;91(7–8):E242–53.

    PubMed  Google Scholar 

  26. Tirone F. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J Cell Physiol. 2001;187(2):155–65.

    Article  PubMed  CAS  Google Scholar 

  27. Yang CH, Yue J, Pfeffer SR, Handorf CR, Pfeffer LM. MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. J Biol Chem. 2011;286(45):39172–8.

    Article  PubMed  CAS  Google Scholar 

  28. Takahashi F, Chiba N, Tajima K, Hayashida T, Shimada T, Takahashi M, et al. Breast tumor progression induced by loss of BTG2 expression is inhibited by targeted therapy with the ErbB/HER inhibitor lapatinib. Oncogene. 2011;30(27):3084–95.

    Article  PubMed  CAS  Google Scholar 

  29. Mollerstrom E, Kovacs A, Lovgren K, Nemes S, Delle U, Danielsson A, et al. Up-regulation of cell cycle arrest protein BTG2 correlates with increased overall survival in breast cancer, as detected by immunohistochemistry using tissue microarray. BMC Cancer. 2010;10:296.

    Article  PubMed  Google Scholar 

  30. Segev DL, Kucirka LM, Oberai PC, Parekh RS, Boulware LE, Powe NR, et al. Age and comorbidities are effect modifiers of gender disparities in renal transplantation. J Am Soc Nephrol. 2009;20(3):621–8.

    Article  PubMed  CAS  Google Scholar 

  31. Liu M, Wu H, Liu T, Li Y, Wang F, Wan H, et al. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Cell Res. 2009;19(7):828–37.

    Article  PubMed  CAS  Google Scholar 

  32. Hagan S, Al-Mulla F, Mallon E, Oien K, Ferrier R, Gusterson B, et al. Reduction of Raf-1 kinase inhibitor protein expression correlates with breast cancer metastasis. Clin Cancer Res. 2005;11(20):7392–7.

    Article  PubMed  CAS  Google Scholar 

  33. Kawakubo H, Brachtel E, Hayashida T, Yeo G, Kish J, Muzikansky A, et al. Loss of B-cell translocation gene-2 in estrogen receptor-positive breast carcinoma is associated with tumor grade and overexpression of cyclin d1 protein. Cancer Res. 2006;66(14):7075–82.

    Article  PubMed  CAS  Google Scholar 

  34. Giricz O, Calvo V, Pero SC, Krag DN, Sparano JA, Kenny PA. GRB7 is required for triple-negative breast cancer cell invasion and survival. Breast Cancer Res Treat. 2012;133(2):607–15.

    Article  PubMed  CAS  Google Scholar 

  35. El Guerrab A, Zegrour R, Nemlin CC, Vigier F, Cayre A, Penault-Llorca F, et al. Differential impact of EGFR-targeted therapies on hypoxia responses: implications for treatment sensitivity in triple-negative metastatic breast cancer. PLoS One. 2011;6(9):e25080.

    Article  PubMed  CAS  Google Scholar 

  36. Chougule MB, Patel AR, Jackson T, Singh M. Antitumor activity of noscapine in combination with doxorubicin in triple negative breast cancer. PLoS One. 2011;6(3):e17733.

    Article  PubMed  CAS  Google Scholar 

  37. Weiss MB, Abel EV, Mayberry MM, Basile KJ, Berger AC, Aplin AE. TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res. 2012;72(24):6382–92.

    Article  PubMed  CAS  Google Scholar 

  38. Zhan Y, Abi Saab WF, Modi N, Stewart AM, Liu J, Chadee DN. Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells. Exp Cell Res. 2012;318(14):1641–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 81150011).

Conflicts of interest

The authors have no commercial, proprietary, or financial interest in the products or companies described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-ru Li.

Additional information

Yan-jun Zhang and Lichun Wei contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Yj., Wei, L., Liu, M. et al. BTG2 inhibits the proliferation, invasion, and apoptosis of MDA-MB-231 triple-negative breast cancer cells. Tumor Biol. 34, 1605–1613 (2013). https://doi.org/10.1007/s13277-013-0691-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-0691-5

Keywords

Navigation