Skip to main content

Advertisement

Log in

Identification of the Rock-dependent transcriptome in rodent fibroblasts

  • Research Articles
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Rock proteins are Rho GTPase-dependent serine/threonine kinases with crucial roles in F-actin dynamics and cell transformation. By analogy with other protein kinase families, it can be assumed that Rock proteins act, at least in part, through the regulation of gene expression events. However, with the exception of some singular transcriptional targets recently identified, the actual impact of these kinases on the overall cell transcriptome remains unknown. To address this issue, we have used a microarray approach to compare the transcriptomes of exponentially growing NIH3T3 cells that had been untreated or treated with Y27632, a well known specific inhibitor for Rock kinase activity. We show here that the Rock pathway promotes a weak impact on the fibroblast transcriptome, since its inhibition only results in changes in the expression of 2.3% of all the genes surveyed in the microarrays. Most Y27632-dependent genes are downregulated at moderate levels, indicating that the Rock pathway predominantly induces the upregulation of transcriptionally active genes. Although functionally diverse, a common functional leitmotiv of Y27632-dependent genes is the implication of their protein products in cytoskeletal-dependent processes. Taken together, these results indicate that Rock proteins can modify cytoskeletal dynamics by acting at post-transcriptional and transcriptional levels. In addition, they suggest that the main target of these serine/threonine kinases is the phosphoproteome and not the transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bustelo XR, Sauzeau V, Berenjeno IM (2007) GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo. Bioessays. Apr 29:356–370

    Article  CAS  Google Scholar 

  2. Van Aelst L, D’souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322.

    Article  PubMed  Google Scholar 

  3. Symons M, Rusk N (2003) Control of vesicular trafficking by Rho GTPases. Curr Biol;13:R409–418.

    Article  PubMed  CAS  Google Scholar 

  4. Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635.

    Article  PubMed  CAS  Google Scholar 

  5. Coleman ML, Marshall CJ, Olson MF (2004) RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 5:355–366.

    Article  PubMed  CAS  Google Scholar 

  6. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269.

    Article  PubMed  CAS  Google Scholar 

  7. Colicelli J (2004) Human RAS superfamily proteins and related GTPases (250)RE13.

  8. DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol 15:356–363.

    Article  PubMed  CAS  Google Scholar 

  9. Dransart E, Olofsson B, Cherfils J (2005) RhoGDIs revisited: novel roles in Rho regulation. Traffic 6:957–966.

    Article  PubMed  CAS  Google Scholar 

  10. Rossman KL, Der CJ, Sondek J (2005) GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 6:167–180.

    Article  PubMed  CAS  Google Scholar 

  11. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129:865–877.

    Article  PubMed  CAS  Google Scholar 

  12. Benitah SA, Valeron PF, van Aelst L, Marshall CJ, Lacal JC (2004) Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 1705:121–132.

    PubMed  CAS  Google Scholar 

  13. Boettner B, Van Aelst L (2002) The role of Rho GTPases in disease development. Gene 286:155–174.

    Article  PubMed  CAS  Google Scholar 

  14. Budzyn K, Marley PD, Sobey CG (2002) Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 27:97–104.

    Article  Google Scholar 

  15. Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142.

    Article  PubMed  Google Scholar 

  16. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Cell Biol 4:446–456.

    Article  CAS  Google Scholar 

  17. Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4:387–398.

    Article  PubMed  CAS  Google Scholar 

  18. Fu X, Gong MC, Jia T, Somlyo AV, Somlyo AP (1998) The effects of the Rhokinase inhibitor Y-27632 on arachidonic acid-, GTPgammaS-, and phorbol esterinduced Ca2+-sensitization of smooth muscle. FEBS Lett 440:183–187.

    Article  PubMed  CAS  Google Scholar 

  19. Shirao S, Kashiwagi S, Sato M et al (2002) Sphingosylphosphorylcholine is a novel messenger for Rho-kinase-mediated Ca2+ sensitization in the bovine cerebral artery: unimportant role for protein kinase C. Circulation research 91:112–119.

    Article  PubMed  CAS  Google Scholar 

  20. Riento K, Guasch RM, Garg R, Jin B, Ridley AJ (2003) RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23:4219–4229.

    Article  PubMed  CAS  Google Scholar 

  21. Ward Y, Yap SF, Ravichandran V, Matsumura F, Ito M, Spinelli B, Kelly K (2002) The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J Cell Biol 157: 291–302.

    Article  PubMed  CAS  Google Scholar 

  22. Lee S, Helfman DM (2004) Cytoplasmic p21Cip1 is involved in Ras-induced inhibition of the ROCK/LIMK/cofilin pathway. J Biol Chem 279: 1885–1891.

    Article  PubMed  CAS  Google Scholar 

  23. Sahai E, Ishizaki T, Narumiya S, Treisman R (1999) Transformation mediated by RhoA requires activity of ROCK kinases. Curr Biol 9:136–145.

    Article  PubMed  CAS  Google Scholar 

  24. Berenjeno IM, Nunez F, Bustelo XR (2007) Transcriptomal profiling of the cellular transformation induced by Rho subfamily GTPases. Oncogene 26:4295–4305.

    Article  PubMed  CAS  Google Scholar 

  25. Chiariello M, Marinissen MJ, Gutkind JS (2001) Regulation of c-myc expression by PDGF through Rho GTPases. Nat Cell Biol 3:580–586.

    Article  PubMed  CAS  Google Scholar 

  26. Han JS, Macarak E, Rosenbloom J, Chung KC, Chaqour B (2003) Regulation of Cyr61/CCN1 gene expression through RhoA GTPase and p38MAPK signaling pathways. Eur J Biochem 270:3408–3421.

    Article  PubMed  CAS  Google Scholar 

  27. Croft DR, Olson MF (2006) The Rho GTPase effector ROCK regulates cyclin A, cyclin D1, and p27Kip1 levels by distinct mechanisms. Mol Cell Biol 26:4612–4627.

    Article  PubMed  CAS  Google Scholar 

  28. Uehata M, Ishizaki T, Satoh H et al (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994.

    Article  PubMed  CAS  Google Scholar 

  29. Calvano SE, Xiao W, Richards DR et al (2005) A network-based analysis of systemic inflammation in humans. Nature. Oct 13 2005;437(7061):1032–1037.

    Article  CAS  Google Scholar 

  30. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4:e83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xosé R. Bustelo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berenjeno, I.M., Bustelo, X.R. Identification of the Rock-dependent transcriptome in rodent fibroblasts. Clin Transl Oncol 10, 726–738 (2008). https://doi.org/10.1007/s12094-008-0279-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-008-0279-5

Keywords

Navigation