Skip to main content

Advertisement

Log in

DNA Methylation: An Introduction to the Biology and the Disease-Associated Changes of a Promising Biomarker

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

DNA methylation occurring on the 5 position of the pyrimidine ring of cytosines in the context of the dinucleotide sequence CpG forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin remodeling complexes to form the genomic chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting and plays a role in maintaining genomic stability as well as in dosage compensation. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins, whereby the epigenome seems to be most vulnerable during early in utero development. Aberrant DNA methylation changes have been detected in several diseases, particularly cancer where genome-wide hypomethylation coincides with gene-specific hypermethylation. DNA methylation patterns can be used to detect cancer at very early stages, to classify tumors as well as predict and monitor the response to anti-neoplastic treatment. As a stable nucleic-acid-based modification with limited dynamic range that is technically easy to handle, DNA methylation is a promising biomarker for many applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18–20.

    Google Scholar 

  2. Tost, J. (2008). Epigenetics. Norwich: Horizon Scientific Press.

    Google Scholar 

  3. Bassett, A., et al. (2009). The folding and unfolding of eukaryotic chromatin. Current Opinion in Genetics and Development, 19, 159–165.

    Article  CAS  Google Scholar 

  4. Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.

    Article  CAS  Google Scholar 

  5. Nightingale, K. P., O’Neill, L. P., & Turner, B. M. (2006). Histone modifications: Signalling receptors and potential elements of a heritable epigenetic code. Current Opinion in Genetics and Development, 16, 125–136.

    Article  CAS  Google Scholar 

  6. Munshi, A., et al. (2009). Histone modifications dictate specific biological readouts. Journal of Genetics & Genomics, 36, 75–88.

    Article  CAS  Google Scholar 

  7. Cedar, H., & Bergman, Y. (2009). Linking DNA methylation and histone modification: Patterns and paradigms. Nature Reviews Genetics, 10, 295–304.

    Article  CAS  Google Scholar 

  8. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes and Development, 16, 6–21.

    Article  CAS  Google Scholar 

  9. Illingworth, R. S., & Bird, A. P. (2009). CpG islands—’a rough guide’. FEBS Letters, 583, 1713–1720.

    Article  CAS  Google Scholar 

  10. Shen, L., et al. (2007). Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters. PLoS Genetics, 3, 2023–2036.

    Article  CAS  Google Scholar 

  11. Illingworth, R., et al. (2008). A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biology, 6, e22.

    Article  CAS  Google Scholar 

  12. Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of Molecular Biology, 196, 261–282.

    Article  CAS  Google Scholar 

  13. Takai, D., & Jones, P. A. (2002). Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences USA, 99, 3740–3745.

    Article  CAS  Google Scholar 

  14. Feltus, F. A., et al. (2006). DNA motifs associated with aberrant CpG island methylation. Genomics, 87, 572–579.

    Article  CAS  Google Scholar 

  15. Bock, C., et al. (2006). CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genetics, 2, e26.

    Article  CAS  Google Scholar 

  16. Jia, D., et al. (2007). Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature, 449, 248–251.

    Article  CAS  Google Scholar 

  17. Ulrey, C. L., et al. (2005). The impact of metabolism on DNA methylation. Human Molecular Genetics, 14(Spec No 1), R139–147.

    Article  CAS  Google Scholar 

  18. Klose, R. J., & Bird, A. P. (2006). Genomic DNA methylation: The mark and its mediators. Trends in Biochemical Sciences, 31, 89–97.

    Article  CAS  Google Scholar 

  19. Cheng, X., & Blumenthal, R. M. (2008). Mammalian DNA methyltransferases: A structural perspective. Structure, 16, 341–350.

    Article  CAS  Google Scholar 

  20. Sasai, N., & Defossez, P. A. (2009). Many paths to one goal? The proteins that recognize methylated DNA in eukaryotes. International Journal of Developmental Biology, 53, 323–334.

    Article  CAS  Google Scholar 

  21. Filion, G. J., et al. (2006). A family of human zinc finger proteins that bind methylated DNA and repress transcription. Molecular and Cellular Biology, 26, 169–181.

    Article  CAS  Google Scholar 

  22. Ooi, S. K., & Bestor, T. H. (2008). The colorful history of active DNA demethylation. Cell, 133, 1145–1148.

    Article  CAS  Google Scholar 

  23. Barreto, G., et al. (2007). Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature, 445, 671–675.

    Article  CAS  Google Scholar 

  24. Morgan, H. D., et al. (2004). Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. The Journal of Biological Chemistry, 279, 52353–52360.

    Article  CAS  Google Scholar 

  25. Metivier, R., et al. (2008). Cyclical DNA methylation of a transcriptionally active promoter. Nature, 452, 45–50.

    Article  CAS  Google Scholar 

  26. Rai, K., et al. (2008). DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell, 135, 1201–1212.

    Article  CAS  Google Scholar 

  27. Jiricny, J., & Menigatti, M. (2008). DNA Cytosine demethylation: Are we getting close? Cell, 135, 1167–1169.

    Article  CAS  Google Scholar 

  28. Guibert, S., Forné, T., & Weber, M. (2009). Dynamic regulation of DNA methylation during mammalian development. Epigenomics, 1, 81–98.

    Article  CAS  Google Scholar 

  29. Reik, W., Dean, W., & Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science, 293, 1089–1093.

    Article  CAS  Google Scholar 

  30. Lees-Murdock, D. J., & Walsh, C. P. (2008). DNA methylation reprogramming in the germ line. Epigenetics, 3, 5–13.

    Google Scholar 

  31. Fauque, P., et al. (2007). Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse embryos. BMC Developmental Biology, 7, 116.

    Article  CAS  Google Scholar 

  32. Paoloni-Giacobino, A. (2007). Epigenetics in reproductive medicine. Pediatric Research, 61, 51R–57R.

    Article  CAS  Google Scholar 

  33. Boissonnas, C. C., et al. (2009). Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. European Journal of Human Genetics (in press).

  34. Wilkins-Haug, L. (2009). Epigenetics and assisted reproduction. Current Opinion in Obstetrics and Gynecology, 21, 201–206.

    Article  Google Scholar 

  35. Niemann, H., et al. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning: Focus on Mammalian Embryogenomics. Reproduction, 135, 151–163.

    Article  CAS  Google Scholar 

  36. Fraga, M. F., & Esteller, M. (2007). Epigenetics and aging: The targets and the marks. Trends in Genetics, 23, 413–418.

    Article  CAS  Google Scholar 

  37. Geiman, T. M., & Robertson, K. D. (2002). Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? Journal of Cellular Biochemistry, 87, 117–125.

    Article  CAS  Google Scholar 

  38. Ushijima, T. (2005). Detection and interpretation of altered methylation patterns in cancer cells. Nature Reviews Cancer, 5, 223–231.

    Article  CAS  Google Scholar 

  39. Cameron, E. E., Baylin, S. B., & Herman, J. G. (1999). p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood, 94, 2445–2451.

    CAS  Google Scholar 

  40. Pao, M. M., et al. (2001). The endothelin receptor B (EDNRB) promoter displays heterogeneous, site specific methylation patterns in normal and tumor cells. Human Molecular Genetics, 10, 903–910.

    Article  CAS  Google Scholar 

  41. Brinkman, A. B., et al. (2007). DNA methylation immediately adjacent to active histone marking does not silence transcription. Nucleic Acids Research, 35, 801–811.

    Article  CAS  Google Scholar 

  42. Yoder, J. A., Walsh, C. P., & Bestor, T. H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics, 13, 335–340.

    Article  CAS  Google Scholar 

  43. Reik, W., & Walter, J. (2001). Genomic imprinting: parental influence on the genome. Nature Reviews Genetics, 2, 21–32.

    Article  CAS  Google Scholar 

  44. Holmes, R., & Soloway, P. D. (2006). Regulation of imprinted DNA methylation. Cytogenetic and Genome Research, 113, 122–129.

    Article  CAS  Google Scholar 

  45. Lewis, A., & Reik, W. (2006). How imprinting centres work. Cytogenetic and Genome Research, 113, 81–89.

    Article  CAS  Google Scholar 

  46. Luedi, P. P., et al. (2007). Computational and experimental identification of novel human imprinted genes. Genome Research, 17, 1723–1730.

    Article  CAS  Google Scholar 

  47. Kurukuti, S., et al. (2006). CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proceedings of the National Academy of Sciences USA, 103, 10684–10689.

    Article  CAS  Google Scholar 

  48. Chow, J., & Heard, E. (2009). X inactivation and the complexities of silencing a sex chromosome. Current Opinion in Cell Biology, 21, 359–366.

    Article  CAS  Google Scholar 

  49. Fraga, M. F., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences USA, 102, 10604–10609.

    Article  CAS  Google Scholar 

  50. Friso, S., et al. (2002). A method to assess genomic DNA methylation using high-performance liquid chromatography/electrospray ionization mass spectrometry. Analytical Chemistry, 74, 4526–4531.

    Article  CAS  Google Scholar 

  51. Waterland, R. A., & Jirtle, R. L. (2003). Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23, 5293–5300.

    Article  CAS  Google Scholar 

  52. Tang, W. Y., & Ho, S. M. (2007). Epigenetic reprogramming and imprinting in origins of disease. Reviews in Endocrine & Metabolic Disorders, 8, 173–182.

    Article  Google Scholar 

  53. Bollati, V., et al. (2007). Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Research, 67, 876–880.

    Article  CAS  Google Scholar 

  54. Feil, R. (2006). Environmental and nutritional effects on the epigenetic regulation of genes. Mutation Research, 600, 46–57.

    CAS  Google Scholar 

  55. Anway, M. D., et al. (2005). Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308, 1466–1469.

    Article  CAS  Google Scholar 

  56. Anway, M. D., & Skinner, M. K. (2008). Epigenetic programming of the germ line: Effects of endocrine disruptors on the development of transgenerational disease. Reproductive Bio Medicine Online, 16, 23–25.

    Google Scholar 

  57. Cuzin, F., Grandjean, V., & Rassoulzadegan, M. (2008). Inherited variation at the epigenetic level: Paramutation from the plant to the mouse. Current Opinion in Genetics and Development, 18, 193–196.

    Article  CAS  Google Scholar 

  58. Rassoulzadegan, M., et al. (2006). RNA-mediated non-Mendelian inheritance of an epigenetic change in the mouse. Nature, 441, 469–474.

    Article  CAS  Google Scholar 

  59. Youngson, N. A., & Whitelaw, E. (2008). Transgenerational epigenetic effects. Annual Review of Genomics and Human Genetics, 9, 233–257.

    Article  CAS  Google Scholar 

  60. Robertson, K. D. (2005). DNA methylation and human disease. Nature Reviews Genetics, 6, 597–610.

    Article  CAS  Google Scholar 

  61. Eggermann, T. (2009). Silver–Russell and Beckwith–Wiedemann syndromes: Opposite (epi)mutations in 11p15 result in opposite clinical pictures. Hormone Research, 71(Suppl 2), 30–35.

    Article  CAS  Google Scholar 

  62. Gurrieri, F., & Accadia, M. (2009). Genetic imprinting: The paradigm of Prader–Willi and Angelman syndromes. Endocrine Development, 14, 20–28.

    Article  Google Scholar 

  63. Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.

    Article  CAS  Google Scholar 

  64. Laird, P. W. (2005). Cancer epigenetics. Human Molecular Genetics, 14(Spec No 1), R65–76.

    Article  CAS  Google Scholar 

  65. Feinberg, A. P., & Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301, 89–92.

    Article  CAS  Google Scholar 

  66. Ehrlich, M. (2002). DNA methylation in cancer: Too much, but also too little. Oncogene, 21, 5400–5413.

    Article  CAS  Google Scholar 

  67. Frigola, J., et al. (2006). Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genetics, 38, 540–549.

    Article  CAS  Google Scholar 

  68. Stransky, N., et al. (2006). Regional copy number-independent deregulation of transcription in cancer. Nature Genetics, 38, 1386–1396.

    Article  CAS  Google Scholar 

  69. Hedenfalk, I., et al. (2001). Gene-expression profiles in hereditary breast cancer. New England Journal of Medicine, 344, 539–548.

    Article  CAS  Google Scholar 

  70. Knudson, A. G. (2001). Two genetic hits (more or less) to cancer. Nature Reviews Cancer, 1, 157–162.

    Article  CAS  Google Scholar 

  71. Balmain, A., Gray, J., & Ponder, B. (2003). The genetics and genomics of cancer. Nature Genetics, 33(Suppl), 238–244.

    Article  CAS  Google Scholar 

  72. Costello, J. F., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24, 132–138.

    Article  CAS  Google Scholar 

  73. Goelz, S. E., et al. (1985). Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228, 187–190.

    Article  CAS  Google Scholar 

  74. Issa, J. P., et al. (2001). Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Research, 61, 3573–3577.

    CAS  Google Scholar 

  75. Laird, P. W. (2003). Early detection: The power and the promise of DNA methylation markers. Nature Reviews Cancer, 3, 253–266.

    Article  CAS  Google Scholar 

  76. Silva, J. M., et al. (1999). Presence of tumor DNA in plasma of breast cancer patients: Clinicopathological correlations. Cancer Research, 59, 3251–3256.

    CAS  Google Scholar 

  77. Fleischhacker, M., & Schmidt, B. (2007). Circulating nucleic acids (CNAs) and cancer—a survey. Biochimica et Biophysica Acta, 1775, 181–232.

    CAS  Google Scholar 

  78. Tost, J. (2007). Analysis of DNA methylation patterns for the early diagnosis, classification and therapy of human cancers. In T. B. Kobayashi (Ed.), DNA methylation research trends (pp. 87–133). Hauppauge, NY: Nova Science Publishers.

  79. Yoo, C. B., & Jones, P. A. (2006). Epigenetic therapy of cancer: Past, present and future. Nature Reviews Drug Discovery, 5, 37–50.

    Article  CAS  Google Scholar 

  80. van Vliet, J., Oates, N. A., & Whitelaw, E. (2007). Epigenetic mechanisms in the context of complex diseases. Cellular and Molecular Life Sciences, 64, 1531–1538.

    Article  CAS  Google Scholar 

  81. Abdolmaleky, H. M., et al. (2006). Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Human Molecular Genetics, 15, 3132–3145.

    Article  CAS  Google Scholar 

  82. Nagarajan, R. P., et al. (2006). Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics, 1, 172–182.

    Article  Google Scholar 

  83. Jones, J. R., et al. (2008). Hypothesis: Dysregulation of methylation of brain-expressed genes on the X chromosome and autism spectrum disorders. American Journal of Medical Genetics A, 146A, 2213–2220.

    Article  CAS  Google Scholar 

  84. Graff, J., & Mansuy, I. M. (2009). Epigenetic dysregulation in cognitive disorders. European Journal of Neuroscience, 30, 1–8.

    Article  Google Scholar 

  85. Balada, E., Ordi-Ros, J., & Vilardell-Tarres, M. (2007). DNA methylation and systemic lupus erythematosus. Annals of the New York Academy of Sciences, 1108, 127–136.

    Article  CAS  Google Scholar 

  86. Neidhart, M., et al. (2000). Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis and Rheumatism, 43, 2634–2647.

    Article  CAS  Google Scholar 

  87. Prescott, S. L., & Clifton, V. (2009). Asthma and pregnancy: Emerging evidence of epigenetic interactions in utero. Current opinion in Allergy and Clinical Immunology, 9, 417–426.

    Article  CAS  Google Scholar 

  88. Junien, C., & Nathanielsz, P. (2007). Report on the IASO stock conference 2006: Early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes. Obesity Reviews, 8, 487–502.

    Article  CAS  Google Scholar 

  89. Tufarelli, C., et al. (2003). Transcription of antisense RNA leading to gene silencing and methylation as a novel cause of human genetic disease. Nature Genetics, 34, 157–165.

    Article  CAS  Google Scholar 

  90. Issa, J. P. (2004). CpG island methylator phenotype in cancer. Nature Reviews Cancer, 4, 988–993.

    Article  CAS  Google Scholar 

  91. Simon, R. (2005). Roadmap for developing and validating therapeutically relevant genomic classifiers. Journal of Clinical Oncology, 23, 7332–7341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Tost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tost, J. DNA Methylation: An Introduction to the Biology and the Disease-Associated Changes of a Promising Biomarker. Mol Biotechnol 44, 71–81 (2010). https://doi.org/10.1007/s12033-009-9216-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9216-2

Keywords

Navigation