Skip to main content
Log in

Integration of gene expression data identifies key genes and pathways in colorectal cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is one of the most common malignant tumor and prevalent cause of cancer-related death worldwide. In this study, we analyzed the gene expression profiles of patients with CRC with the aim of better understanding the molecular mechanism and key genes in CRC. Four gene expression profiles including, GSE9348, GSE41328, GSE41657, and GSE113513 were downloaded from GEO database. The data were processed using R programming language, in which 319 common differentially expressed genes including 94 up-regulated and 225 down-regulated were identified. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were conducted to find the most significant enriched pathways in CRC. Based on the GO and KEGG pathway analysis, the most important dysregulated pathways were regulation of cell proliferation, biocarbonate transport, Wnt, and IL-17 signaling pathways, and nitrogen metabolism. The protein–protein interaction (PPI) network of the DEGs was constructed using Cytoscape software and hub genes including MYC, CXCL1, CD44, MMP1, and CXCL12 were identified as the most critical hub genes. The present study enhances our understanding of the molecular mechanisms of the CRC, which might potentially be applied in the treatment strategies of CRC as molecular targets and diagnostic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  1. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, et al. Colorectal cancer statistics, 2020. CA Cancer J Clin. 2020;70:145–64.

    PubMed  Google Scholar 

  2. Guo Y, Bao Y, Ma M, Yang W. Identification of key candidate genes and pathways in colorectal cancer by integrated bioinformatical analysis. Int J Mol Sci. 2017;18(4):722.

    PubMed Central  Google Scholar 

  3. Liang B, Li C, Zhao J. Identification of key pathways and genes in colorectal cancer using bioinformatics analysis. Med Oncol. 2016;33(10):111.

    PubMed  Google Scholar 

  4. Lv J, Li L. Hub genes and key pathway identification in colorectal cancer based on bioinformatic analysis. BioMed Res Int. 2019;2019:1545680.

    PubMed  PubMed Central  Google Scholar 

  5. Mohapatra SK, Krishnan A. Microarray data analysis. Plant reverse genetics. Totowa: Humana Press; 2011. p. 27–43.

    Google Scholar 

  6. Gautier L, Cope L, Bolstad BM, Irizarry RA. affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.

    PubMed  CAS  Google Scholar 

  7. Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p. 397–420.

    Google Scholar 

  8. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44(W1):W90–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–52.

    PubMed  CAS  Google Scholar 

  12. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003;4(1):2.

    Google Scholar 

  13. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BV, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19(8):649–58.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Sakai E, Fukuyo M, Ohata K, Matsusaka K, Doi N, Mano Y, et al. Genetic and epigenetic aberrations occurring in colorectal tumors associated with serrated pathway. Int J Cancer. 2016;138(7):1634–44.

    PubMed  CAS  Google Scholar 

  15. Lu W, Li N, Liao F. Identification of key genes and pathways in pancreatic cancer gene expression profile by integrative analysis. Genes. 2019;10(8):612.

    PubMed Central  CAS  Google Scholar 

  16. Huang Q, Wu L-Y, Wang Y, Zhang X-S. GOMA: functional enrichment analysis tool based on GO modules. Chin J Cancer. 2013;32(4):195.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Perez R, Wu N, Klipfel AA, Beart RW. A better cell cycle target for gene therapy of colorectal cancer: cyclin G. J Gastrointest Surg. 2003;7(7):884–9.

    PubMed  Google Scholar 

  18. Tominaga O, Nita ME, Nagawa H, Fujii S, Tsuruo T, Muto T. Expressions of cell cycle regulators in human colorectal cancer cell lines. Jpn J Cancer Res. 1997;88(9):855–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Djamgoz MB, Coombes RC, Schwab A. Ion transport and cancer: from initiation to metastasis. London: The Royal Society; 2014.

    Google Scholar 

  20. Han B, Feng D, Yu X, Zhang Y, Liu Y, Zhou L. Identification and interaction analysis of molecular markers in colorectal cancer by integrated bioinformatics analysis. Med Sci Monit. 2018;24:6067.

    PubMed Central  CAS  Google Scholar 

  21. Chen S, Wang Y, Zhang L, Su Y, Zhang M, Wang J, et al. Exploration of the mechanism of colorectal cancer metastasis using microarray analysis. Oncol Lett. 2017;14(6):6671–7.

    PubMed  PubMed Central  Google Scholar 

  22. Al-Rawi M, Rmali K, Watkins G, Mansel R, Jiang W. Aberrant expression of interleukin-7 (IL-7) and its signalling complex in human breast cancer. Eur J Cancer. 2004;40(4):494–502.

    PubMed  CAS  Google Scholar 

  23. Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J. Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol. 2013;2013:436307.

    PubMed  PubMed Central  Google Scholar 

  24. Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol. 2005;175(9):6177–89.

    PubMed  CAS  Google Scholar 

  25. Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM, Silva JS. Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol. 2013;43(6):1518–28.

    PubMed  CAS  Google Scholar 

  26. Li C, Zeng X, Yu H, Gu Y, Zhang W. Identification of hub genes with diagnostic values in pancreatic cancer by bioinformatics analyses and supervised learning methods. World J Surg Oncol. 2018;16(1):223.

    PubMed  PubMed Central  Google Scholar 

  27. Zhao ZW, Fan XX, Yang LL, Song JJ, Fang SJ, Tu JF, et al. The identification of a common different gene expression signature in patients with colorectal cancer. Math Biosci Eng. 2019;16(4):2942–58.

    PubMed  Google Scholar 

  28. Liu J, Li H, Sun L, Shen S, Zhou Q, Yuan Y, et al. Epigenetic alternations of MicroRNAs and DNA methylation contribute to liver metastasis of colorectal cancer. Dig Dis Sci. 2019;64(6):1523–34.

    PubMed  CAS  Google Scholar 

  29. Carter AB, Misyak SA, Hontecillas R, Bassaganya-Riera J. Dietary modulation of inflammation-induced colorectal cancer through PPAR. PPAR Res. 2009;2009:498352.

    PubMed  PubMed Central  Google Scholar 

  30. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y. CD44 in cancer. Crit Rev Clin Lab Sci. 2002;39(6):527–79.

    PubMed  CAS  Google Scholar 

  31. Wang Z, Tang Y, Xie L, Huang A, Xue C, Gu Z, et al. The prognostic and clinical value of CD44 in colorectal cancer: a meta-analysis. Front Oncol. 2019;9:309.

    PubMed  PubMed Central  Google Scholar 

  32. Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751–60.

    PubMed  CAS  Google Scholar 

  33. Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J Biol Chem. 2004;279(26):26991–7007.

    PubMed  CAS  Google Scholar 

  34. Harada N, Mizoi T, Kinouchi M, Hoshi K, Ishii S, Shiiba K, et al. Introduction of antisense CD44s cDNA down-regulates expression of overall CD44 isoforms and inhibits tumor growth and metastasis in highly metastatic colon carcinoma cells. Int J Cancer. 2001;91(1):67–75.

    PubMed  CAS  Google Scholar 

  35. Murray GI, Duncan ME, O’Neil P, Melvin WT, Fothergill JE. Matrix metalloproteinase–1 is associated with poor prognosis in colorectal cancer. Nat Med. 1996;2(4):461–2.

    PubMed  CAS  Google Scholar 

  36. Wang Q, Chen S, Wu J, Liu D, Jiang N, Wang B, et al. Identification of potential hub genes and signal pathways promoting the distinct biological features of cord blood-derived endothelial progenitor cells via bioinformatics. Genet Test Mol Biomark. 2020. https://doi.org/10.1089/gtmb.2019.0272.

    Article  Google Scholar 

  37. Melhem MF, Meisler AI, Finley GG, Bryce WH, Jones MO, Tribby II, et al. Distribution of cells expressing myc proteins in human colorectal epithelium, polyps, and malignant tumors. Cancer Res. 1992;52(21):5853–64.

    PubMed  CAS  Google Scholar 

  38. Satoh K, Yachida S, Sugimoto M, Oshima M, Nakagawa T, Akamoto S, et al. Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc Natl Acad Sci. 2017;114(37):E7697–706.

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Gu L, Chu P, Lingeman R, McDaniel H, Kechichian S, Hickey RJ, et al. The mechanism by which MYCN amplification confers an enhanced sensitivity to a PCNA-derived cell permeable peptide in neuroblastoma cells. EBioMedicine. 2015;2(12):1923–31.

    PubMed  PubMed Central  Google Scholar 

  40. Yuan M, Zhu H, Xu J, Zheng Y, Cao X, Liu Q. Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils. J Immunol Res. 2016. https://doi.org/10.1155/2016/6530410.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kong D-J, Qin Y-F, Li G-M, Zhao Y-M, Hao J-P, Wang H. Identification of hub gene TIMP1 and relative ceRNAs regulatory network in colorectal cancer. 2020.

  42. Hsu Y-L, Chen Y-J, Chang W-A, Jian S-F, Fan H-L, Wang J-Y, et al. Interaction between tumor-associated dendritic cells and colon cancer cells contributes to tumor progression via CXCL1. Int J Mol Sci. 2018;19(8):2427.

    PubMed Central  Google Scholar 

  43. le Rolle A-F, Chiu TK, Fara M, Shia J, Zeng Z, Weiser MR, et al. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J Trans Med. 2015;13(1):1–12.

    CAS  Google Scholar 

  44. Nagasawa T. CXC chemokine ligand 12 (CXCL12) and its receptor CXCR4. J Mol Med. 2014;92(5):433–9.

    PubMed  CAS  Google Scholar 

  45. Wendt MK, Johanesen PA, Kang-Decker N, Binion DG, Shah V, Dwinell MB. Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene. 2006;25(36):4986–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Chen L, Pan X, Hu X, Zhang YH, Wang S, Huang T, et al. G ene expression differences among different MSI statuses in colorectal cancer. Int J Cancer. 2018;143(7):1731–40.

    PubMed  CAS  Google Scholar 

  47. Ma Y-S, Huang T, Zhong X-M, Zhang H-W, Cong X-L, Xu H, et al. Proteogenomic characterization and comprehensive integrative genomic analysis of human colorectal cancer liver metastasis. Mol Cancer. 2018;17(1):139.

    PubMed  PubMed Central  Google Scholar 

  48. Zhang G-L, Pan L-L, Huang T, Wang J-H. The transcriptome difference between colorectal tumor and normal tissues revealed by single-cell sequencing. J Cancer. 2019;10(23):5883.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhang TM, Huang T, Wang RF. Cross talk of chromosome instability, CpG island methylator phenotype and mismatch repair in colorectal cancer. Oncol Lett. 2018;16(2):1736–46.

    PubMed  PubMed Central  Google Scholar 

  50. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330.

    Google Scholar 

  51. Li B-Q, Huang T, Liu L, Cai Y-D, Chou K-C. Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS ONE. 2012;7(4):e33393.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Jiang Y, Huang T, Chen L, Gao Y-F, Cai Y, Chou K-C. Signal propagation in protein interaction network during colorectal cancer progression. BioMed Res Int. 2013;2013:287019.

    PubMed  PubMed Central  Google Scholar 

  53. Li B-Q, Huang T, Zhang J, Zhang N, Huang G-H, Liu L, et al. An ensemble prognostic model for colorectal cancer. PLoS ONE. 2013;8(5):e63494.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Zheng Z, Xie J, Xiong L, Gao M, Qin L, Dai C, et al. Identification of candidate biomarkers and therapeutic drugs of colorectal cancer by integrated bioinformatics analysis. Med Oncol. 2020;37(11):104. https://doi.org/10.1007/s12032-020-01425-2.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HH designed the study. HH and S-MR implemented the methods and analyzed the data. HH, AL contributed to the interpretation of the results. HH, S-MR, AL drafted the manuscript and prepared all figures and tables. AM outlined the methods and edited the manuscript and figures. All authors participated in improving the writing of the manuscript.

Corresponding authors

Correspondence to Hossein Hozhabri or Ali Mohammadian.

Ethics declarations

Conflict of interest

All the authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hozhabri, H., Lashkari, A., Razavi, SM. et al. Integration of gene expression data identifies key genes and pathways in colorectal cancer. Med Oncol 38, 7 (2021). https://doi.org/10.1007/s12032-020-01448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-020-01448-9

Keywords

Navigation