Skip to main content

Advertisement

Log in

Upregulated PFTK1 promotes tumor cell proliferation, migration, and invasion in breast cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

PFTK1 was a cell division cycle 2-related serine/threonine protein kinase, which was up-regulated in breast cancer tissues and breast cancer lines. And up-regulated PFTK1 was highly associated with grade, axillary lymph node status, and Ki-67. Moreover, Kaplan–Meier curve showed that up-regulated PFTK1 was related to the poor breast carcinoma patients’ overall survival. Here, we first discovered and confirmed that cyclin B was a new interacting protein of PFTK1, and the complex might increase the amount of DVL2, which triggers Wnt/β-catenin signaling pathway. Furthermore, knockdown of PFTK1 attenuated cell proliferation, anchorage-independent cell growth, and cell migration and invasion by inhibiting the transcriptional activation of β-catenin for cyclin D1, MMP9, and HEF1, whereas exogenous expression of PFTK1 might promote MDA-MB-231 cells proliferation, migration, and invasion via promoting PFTK1–DVL2–β-catenin axis. Our findings supported the notion that up-regulated PFTK1 might promote breast cancer progression and metastasis by activating Wnt signaling pathway through the PFTK1–DVL2–β-catenin axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sakharkar MK, Shashni B, Sharma K, Dhillon SK, Ranjekar PR, Sakharkar KR. Therapeutic implications of targeting energy metabolism in breast cancer. PPAR Res. 2013;2013:109285.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bray F, McCarron P, Parkin DM. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res. 2004;6(6):229–39.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med. 2005;353(17):1784–92.

    Article  CAS  PubMed  Google Scholar 

  4. Cooney CA, Jousheghany F, Yao-Borengasser A, Phanavanh B, Gomes T, Kieber-Emmons AM, et al. Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells. Breast cancer Res. 2011;13(3):R58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Fujii S, Tokita K, Wada N, Ito K, Yamauchi C, Ito Y, et al. MEK–ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene. 2011;30(39):4118–28.

    Article  CAS  PubMed  Google Scholar 

  6. Kong C, Wang C, Wang L, Ma M, Niu C, Sun X, et al. NEDD9 is a positive regulator of epithelial-mesenchymal transition and promotes invasion in aggressive breast cancer. PLoS One. 2011;6(7):e22666.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang L-H. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res. 2007;67(5):1979–87.

    Article  CAS  PubMed  Google Scholar 

  8. Yee DS, Tang Y, Li X, Liu Z, Guo Y, Ghaffar S, et al. The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Mol Cancer. 2010;9:162.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–205.

    Article  CAS  PubMed  Google Scholar 

  10. Gabrovska P, Smith RA, Tiang T, Weinstein SR, Haupt LM, Griffiths LR. Development of an eight gene expression profile implicating human breast tumours of all grade. Mol Biol Rep. 2012;39(4):3879–92.

    Article  CAS  PubMed  Google Scholar 

  11. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH. Wnt/β-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol. 2010;176(6):2911–20.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Loh YN, Hedditch EL, Baker LA, Jary E, Ward RL, Ford CE. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer. 2013;13(1):174.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Incassati A, Chandramouli A, Eelkema R, Cowin P. Key signaling nodes in mammary gland development and cancer: beta-catenin. Breast cancer Res. 2010;12(6):213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Staal FJ, Luis TC, Tiemessen MM. WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol. 2008;8(8):581–93.

    Article  CAS  PubMed  Google Scholar 

  15. He T-C, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281(5382):1509–12.

    Article  CAS  PubMed  Google Scholar 

  16. Tetsu O, McCormick F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 1999;398(6726):422–6.

    Article  CAS  PubMed  Google Scholar 

  17. Xia D, Holla VR, Wang D, Menter DG, DuBois RN. HEF1 is a crucial mediator of the proliferative effects of prostaglandin E2 on colon cancer cells. Cancer Res. 2010;70(2):824–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Zucker S, Vacirca J. Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):101–17.

    Article  CAS  PubMed  Google Scholar 

  19. Smalley MJ, Sara E, Paterson H, Naylor S, Cook D, Jayatilake H, et al. Interaction of Axin and Dvl-2 proteins regulates Dvl-2-stimulated TCF-dependent transcription. EMBO J. 1999;18(10):2823–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Yang T, Chen J. Identification and cellular localization of human PFTAIRE1. Gene. 2001;267(2):165–72.

    Article  CAS  PubMed  Google Scholar 

  21. Shu F, Lv S, Qin Y, Ma X, Wang X, Peng X, et al. Functional characterization of human PFTK1 as a cyclin-dependent kinase. Proc Natl Acad Sci. 2007;104(22):9248–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jiang M, Gao Y, Yang T, Zhu X, Chen J. Cyclin Y, a novel membrane-associated cyclin, interacts with PFTK1. FEBS Lett. 2009;583(13):2171–8.

    Article  CAS  PubMed  Google Scholar 

  23. Leung W, Ching A, Chan A, Poon T, Mian H, Wong A, et al. A novel interplay between oncogenic PFTK1 protein kinase and tumor suppressor TAGLN2 in the control of liver cancer cell motility. Oncogene. 2011;30(44):4464–75.

    Article  CAS  PubMed  Google Scholar 

  24. Miyagaki H, Yamasaki M, Miyata H, Takahashi T, Kurokawa Y, Nakajima K, et al. Overexpression of PFTK1 predicts resistance to chemotherapy in patients with oesophageal squamous cell carcinoma. Br J Cancer. 2012;106(5):947–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Yue W, Zhao X, Zhang L, Xu S, Liu Z, Ma L, et al. Cell cycle protein cyclin Y is associated with human non-small-cell lung cancer proliferation and tumorigenesis. Clin Lung Cancer. 2011;12(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  26. Sun T, Co NN, Wong N. PFTK1 interacts with cyclin Y to activate non-canonical Wnt signaling in hepatocellular carcinoma. Biochem Biophys Res Commun. 2014;449(1):163–8.

    Article  CAS  PubMed  Google Scholar 

  27. Niehrs C, Acebron SP. Mitotic and mitogenic Wnt signalling. EMBO J. 2012;31(12):2705–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Liu Y, Wang Y, Cheng C, Chen Y, Shi S, Qin J, et al. A relationship between p27kip1 and Skp2 after adult brain injury: implications for glial proliferation. J Neurotrauma. 2010;27(2):361–71.

    Article  PubMed  Google Scholar 

  29. Ji L, Li H, Gao P, Shang G, Zhang DD, Zhang N, et al. Nrf2 pathway regulates multidrug-resistance-associated protein 1 in small cell lung cancer. PLoS One. 2013;8(5):e63404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Tao T, Cheng C, Ji Y, Xu G, Zhang J, Zhang L, et al. Numbl inhibits glioma cell migration and invasion by suppressing TRAF5-mediated NF-κB activation. Mol Biol Cell. 2012;23(14):2635–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Liu Z, Rebowe RE, Wang Z, Li Y, Wang Z, DePaolo JS, et al. KIF3a promotes proliferation and invasion via Wnt signaling in advanced prostate cancer. Mol Cancer Res. 2014;12(4):491–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Dai M, Al-Odaini AA, Fils-Aimé N, Villatoro MA, Guo J, Arakelian A, et al. Cyclin D1 cooperates with p21 to regulate TGFb-mediated breast cancer cell migration and tumor local invasion. Breast Cancer Res. 2013;15(3):R49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Marastoni S, Andreuzzi E, Paulitti A, Colladel R, Pellicani R, Todaro F, et al. EMILIN2 down-modulates the Wnt signalling pathway and suppresses breast cancer cell growth and migration. J Pathol. 2014;232(4):391–404.

    Article  CAS  PubMed  Google Scholar 

  34. Prasad CP, Chaurasiya SK, Axelsson L, Andersson T. WNT-5A triggers Cdc42 activation leading to an ERK1/2 dependent decrease in MMP9 activity and invasive migration of breast cancer cells. Mol Oncol. 2013;7(5):870–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China Grants (Nos. 81302285, 81472185).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoxin Mao or Shuyun Yang.

Additional information

Xiaoling Gu and Yingying Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, X., Wang, Y., Wang, H. et al. Upregulated PFTK1 promotes tumor cell proliferation, migration, and invasion in breast cancer. Med Oncol 32, 195 (2015). https://doi.org/10.1007/s12032-015-0641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-015-0641-8

Keywords

Navigation