Skip to main content

Advertisement

Log in

CCL21/CCR7 axis activating chemotaxis accompanied with epithelial–mesenchymal transition in human breast carcinoma

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Secondary lymphoid tissue chemokine (SLC/CCL21) and its receptor CCR7 have been implicated in lymph node metastasis, whereas the mechanism of which remains unclear. Epithelial–mesenchymal transition (EMT) plays an important role in invasion and migration of cancer cells. We presumed that CCL21/CCR7 axis activates EMT process to induce cancer cell invasion and metastasis. Firstly, the expressions of CCR7 and EMT markers were examined by immunohistochemical staining in the primary breast carcinoma tissues from 60 patients who underwent radical mastectomy. Then, we investigated whether CCL21/CCR7 induces EMT process during mediating cancer cell invasion or migration in vitro. By immunohistolochemistry, high expressions of CCR7, Slug and N-cadherin were seen in 60, 65, and 76.67 % of tumors, respectively, and significantly associated with lymph node metastases as well as clinical pathological stage. Furthermore, the CCR7 expression was significantly correlated to Slug and N-cadherin. In vitro, stimulating breast cancer cell lines 1428, MCF-7 and MDA-MB-231 with CCL21, the invasion and migration of tumor cells were promoted, and simultaneously, EMT phenotype of tumor cells was enhanced, including down-regulation of E-cadherin, up-regulation of Slug, Vimentin and N-cadherin at both protein and mRNA levels. Inversely, knockdown of CCR7 by shRNA suppressed tumor cell invasion, migration and EMT phenotype induced by CCL21. These results indicated that CCL21/CCR7 axis could activate EMT process during chemotaxis of breast carcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Teshome M, Hunt KK. Neoadjuvant therapy in the treatment of breast cancer. Surg Oncol Clin N Am. 2014;23(3):505–23.

    Article  PubMed  Google Scholar 

  2. Eccles SA, Welch DR. Metastasis: recent discoveries and novel treatment strategies. Lancet. 2007;369(9574):1742–57.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Grabau D, Dihge L, Fernö M, Ingvar C, Rydén L. Completion axillary dissection can safely be omitted in screen detected breast cancer patients with micrometastases. A decade’s experience from a single institution. Eur J Surg Oncol. 2013;39(6):601–7.

    Article  PubMed  CAS  Google Scholar 

  4. Mukaida N, Baba T. Chemokines in tumor development and progression. Exp Cell Res. 2012;318(2):95–102.

    Article  PubMed  CAS  Google Scholar 

  5. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD, Williams LT. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naïve T lymphocytes. Proc Natl Acad Sci USA. 1998;95(1):258–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Baekkevold ES, Yamanaka T, Palframan RT, Carlsen HS, Reinholt FP, von Andrian UH, et al. The CCR7 ligand ELC (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med. 2001;193:1105–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Carlsen HS, Haraldsen G, Brandtzaeg P, Baekkevold ES. Disparate lymphoid chemokine expression in mice and men: no evidence of CCL21 synthesis by human high endothelial venules. Blood. 2005;106(2):444–6.

    Article  PubMed  CAS  Google Scholar 

  8. Forster R, Valos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8:362–71.

    Article  PubMed  Google Scholar 

  9. Sanchez-Sanchez N, Riol-Blanco L, de la Rosa G, Puig-Kroger A, Garcia-Bordas J, Martin D, et al. Chemokine receptor CCR7 induces intracellular signaling that inhibits apoptosis of mature dendritic cells. Blood. 2004;104:619–25.

    Article  PubMed  CAS  Google Scholar 

  10. Link A, Vogt TK, Favre S, Britschgi MR, Acha-Orbea H, Hinz B, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naïve T cells. Nat Immunol. 2007;8(11):1255–65.

  11. Zlotnik A. Chemokines and cancer. Int J Cancer. 2006;119:2026–9.

    Article  PubMed  CAS  Google Scholar 

  12. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  PubMed  CAS  Google Scholar 

  13. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13(2):97–100.

    Article  PubMed  Google Scholar 

  14. Taki M, Higashikawa K, Yoneda S, Ono S, Shigeishi H, Nagayama M, et al. Up-regulation of stromal cell-derived factor-1alpha and its receptor CXCR4 expression accompanied with epithelial–mesenchymal transition in human oral squamous cell carcinoma. Oncol Rep. 2008;19(4):993–8.

    PubMed  CAS  Google Scholar 

  15. Bertran E, Caja L, Navarro E, Sancho P, Mainez J, Murillo MM, et al. Role of CXCR4/SDF-1 alpha in the migratory phenotype of hepatoma cells that have undergone epithelial–mesenchymal transition in response to the transforming growth factor-beta. Cell Signal. 2009;21(11):1595–606.

    Article  PubMed  CAS  Google Scholar 

  16. Li X, Ma Q, Xu Q, Liu H, Lei J, Duan W, et al. SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial–mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway. Cancer Lett. 2012;322(2):169–76.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−ΔΔ C (T)) Method. Methods. 2001;25(4):402–8.

    Article  PubMed  CAS  Google Scholar 

  18. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–6.

    Article  PubMed  CAS  Google Scholar 

  19. Cabioglu N, Yazici MS, Arun B, Broglio KR, Hortobagyi GN, Price JE, et al. CCR7 and CXCR4 as novel biomarkers predicting axillary lymph node metastasis in T1 breast cancer. Clin Cancer Res. 2005;11(16):5686–93.

    Article  PubMed  CAS  Google Scholar 

  20. Liu Y, Ji R, Li J, Gu Q, Zhao X, Sun T, et al. Correlation effect of EGFR and CXCR4 and CCR7 chemokine receptors in predicting breast cancer metastasis and prognosis. J Exp Clin Cancer Res. 2010;29:16. doi:10.1186/1756-9966-29-16.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Takanami I. Overexpression of CCR7 mRNA in nonsmall cell lung cancer: correlation with lymph node metastasis. Int J Cancer. 2003;105:186–9.

    Article  PubMed  CAS  Google Scholar 

  22. Ding Y, Shimada Y, Maeda M, Kawabe A, Kaganoi J, Komoto I, et al. Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res. 2003;9:3406–12.

    PubMed  CAS  Google Scholar 

  23. Mashino K, Sadanaga N, Yamaguchi H, Tanaka F, Ohta M, Shibuta K, et al. Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res. 2002;62(10):2937–41.

    PubMed  CAS  Google Scholar 

  24. Gunther K, Leier J, Henning G, Dimmler A, Weissbach R, Hohenberger W, et al. Prediction of lymph node metastasis in colorectal carcinoma by expression of chemokine receptor CCR7. Int J Cancer. 2005;116:726–33.

    Article  PubMed  Google Scholar 

  25. Sancho M, Vieira JM, Casalou C, Mesquita M, Pereira T, Cavaco BM, et al. Expression and function of the chemokine receptor CCR7 in thyroid carcinomas. J Endocrinol. 2006;191(1):229–38.

    Article  PubMed  CAS  Google Scholar 

  26. Oliveira-Neto HH, de Souza PP, da Silva MR, Mendonça EF, Silva TA, Batista AC. The expression of chemokines CCL19, CCL21 and their receptor CCR7 in oral squamous cell carcinoma and its relevance to cervical lymph node metastasis. Tumour Biol. 2013;34:65–70.

    Article  PubMed  CAS  Google Scholar 

  27. Martin TA, Goyal A, Watkins G, Jiang WG. Expression of the transcription factors snail, Slug, and twist and their clinical significance in human breast cancer. Ann Surg Oncol. 2005;12(6):488–96.

    Article  PubMed  Google Scholar 

  28. Nagi C, Guttman M, Jaffer S, Qiao R, Keren R, Triana A, et al. N-Cadherin expression in breast cancer: correlation with an aggressive histologic variant-invasive micropapillary carcinoma. Breast Cancer Res Treat. 2005;94(3):225–35.

  29. Mumtaz M, Wågsäter D, Löfgren S, Hugander A, Zar N, Dimberg J. Decreased expression of the chemokine CCL21 in human colorectal adenocarcinomas. Oncol Rep. 2009;21(1):153–8.

    PubMed  CAS  Google Scholar 

  30. Sperveslage J, Frank S, Heneweer C, Egberts J, Schniewind B, Buchholz M, et al. Lack of CCR7 expression is rate limiting for lymphatic spread of pancreatic ductal adenocarcinoma. Int J Cancer. 2012;131(4):E371–81.

    Article  PubMed  CAS  Google Scholar 

  31. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA. Autologous chemotaxis as mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine CCR7 signaling. Cancer Cell. 2007;11(6):526–38.

    Article  PubMed  CAS  Google Scholar 

  32. Guo N, Liu F, Yang L, Huang J, Ding X, Sun C. Chemokine receptor 7 enhances cell chemotaxis and migration of metastatic squamous cell carcinoma of head and neck through activation of matrix metalloproteinase-9. Oncol Rep. 2014;32(2):794–800.

    PubMed  Google Scholar 

  33. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. Cadherin switching. J Cell Sci. 2008;121(Pt 6):727–35.

    Article  PubMed  CAS  Google Scholar 

  34. Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci. 2003;116(Pt 3):499–511.

    Article  PubMed  Google Scholar 

  35. Vuoriluoto K, Haugen H, Kiviluoto S, Mpindi JP, Nevo J, Gjerdrum C, et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011;30(12):1436–48.

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shandong Province (No. ZR2013HM096), and the Medicine and health care in Shandong province science and technology development plan Project (No. 2013WS0207). We greatly thank the members of the Tian Hua laboratory for their insightful discussions and advice on this Project.

Conflict of interest

Authors state that there are no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Zou, Z., Suo, N. et al. CCL21/CCR7 axis activating chemotaxis accompanied with epithelial–mesenchymal transition in human breast carcinoma. Med Oncol 31, 180 (2014). https://doi.org/10.1007/s12032-014-0180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0180-8

Keywords

Navigation