Skip to main content
Log in

Characterization of functional transposable element enhancers in acute myeloid leukemia

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Transposable elements (TEs) have been shown to have important gene regulatory functions and their alteration could lead to disease phenotypes. Acute myeloid leukemia (AML) develops as a consequence of a series of genetic changes in hematopoietic precursor cells, including mutations in epigenetic factors. Here, we set out to study the gene regulatory role of TEs in AML. We first explored the epigenetic landscape of TEs in AML patients using ATAC-seq data. We show that a large number of TEs in general, and more specifically mammalian-wide interspersed repeats (MIRs), are more enriched in AML cells than in normal blood cells. We obtained a similar finding when analyzing histone modification data in AML patients. Gene Ontology enrichment analysis showed that genes near MIRs in open chromatin regions are involved in leukemogenesis. To functionally validate their regulatory role, we selected 19 MIR regions in AML cells, and tested them for enhancer activity in an AML cell line (Kasumi-1) and a chronic myeloid leukemia (CML) cell line (K562); the results revealed several MIRs to be functional enhancers. Taken together, our results suggest that TEs are potentially involved in myeloid leukemogenesis and highlight these sequences as potential candidates harboring AML-associated variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

Data that support the findings of this study were all published by others; a summary of the used data is presented in Table S6 in Supporting Information.

References

  • Adams, D., Altucci, L., Antonarakis, S.E., Ballesteros, J., Beck, S., Bird, A., Bock, C., Boehm, B., Campo, E., Caricasole, A., et al. (2012). BLUEPRINT to decode the epigenetic signature written in blood. Nat Biotechnol 30, 224–226.

    CAS  PubMed  Google Scholar 

  • Bailey, T.L., and Machanick, P. (2012). Inferring direct DNA binding from ChIP-seq. Nucleic Acids Res 40, e128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey, T.L., Williams, N., Misleh, C., and Li, W.W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34, W369–W373.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belancio, V.P., Deininger, P.L., and Roy-Engel, A.M. (2009). LINE dancing in the human genome: transposable elements and disease. Genome Med 1, 97.

    PubMed  PubMed Central  Google Scholar 

  • Bergerson, R.J., Collier, L.S., Sarver, A.L., Been, R.A., Lugthart, S., Diers, M.D., Zuber, J., Rappaport, A.R., Nixon, M.J., Silverstein, K.A.T., et al. (2012). An insertional mutagenesis screen identifies genes that cooperate with M11-AF9 in a murine leukemogenesis model. Blood 119, 4512–4523.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y., and Greenleaf, W.J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213–1218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burns, K.H. (2017). Transposable elements in cancer. Nat Rev Cancer 17, 415–424.

    CAS  PubMed  Google Scholar 

  • Burns, K.H., and Boeke, J.D. (2012). Human transposon tectonics. Cell 149, 740–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., and Rinn, J.L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25, 1915–1927.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, Y., Chen, G., Wu, G., Zhang, X., McDermott, J., Chen, X., Xu, C., Jiang, Q., Chen, Z., Zeng, Y., et al. (2019). Widespread roles of enhancer-like transposable elements in cell identity and long-range genomic interactions. Genome Res 40–52.

    PubMed  Google Scholar 

  • Carnevali, D., Conti, A., Pellegrini, M., and Dieci, G. (2016). Wholegenome expression analysis of mammalian-wide interspersed repeat elements in human cell lines. DNA Res dsw048.

  • Casarin, A., Martella, M., Polli, R., Leonardi, E., Anesi, L., and Murgia, A. (2006). Molecular characterization of large deletions in the von Hippel-Lindau (VHL) gene by quantitative real-time PCR. Mol Diag Ther 10, 243–249.

    CAS  Google Scholar 

  • Chenais, B. (2015). Transposable elements in cancer and other human diseases. Cur Cancer Drug Targets 15, 227–242.

    CAS  Google Scholar 

  • Cohen, D.E., Davidow, L.S., Erwin, J.A., Xu, N., Warshawsky, D., and Lee, J.T. (2007). The DXPas34 repeat regulates random and imprinted X inactivation. Dev Cell 12, 57–71.

    CAS  PubMed  Google Scholar 

  • Conley, A.B., Miller, W.J., and Jordan, I.K. (2008). Human cis natural antisense transcripts initiated by transposable elements. Trends Genet 24, 53–56.

    CAS  PubMed  Google Scholar 

  • Corces, M.R., Buenrostro, J.D., Wu, B., Greenside, P.G., Chan, S.M., Koenig, J.L., Snyder, M.P., Pritchard, J.K., Kundaje, A., Greenleaf, W. J., et al. (2016). Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48, 1193–1203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Czibere, A., Singh, R., Bruns, I., Zerbini, L.F., and Haas, R. (2008). Ap-1 family members C-Jun, JunB and Fra-2 mediate apoptosis and differentiation in AML through activation of GADD45 alpha and ADFP following non-steroidal anti-inflammatory drug treatment. Blood 112, 436–436.

    Google Scholar 

  • Darlington, R.B., and Hayes, A.F. (2000). Combining independent p values: Extensions of the Stouffer and binomial methods. Psychol Methods 5, 496–515.

    CAS  PubMed  Google Scholar 

  • Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., Kotsinas, A., Gorgoulis, V., Field, J.K., and Liloglou, T. (2009). Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124, 81–87.

    CAS  PubMed  Google Scholar 

  • Demsar, J., Curk, T., Erjavec, A., Gorup, C., Hocevar, T., Milutinovic, M., Mozina, M., Polajnar, M., Toplak, M., Staric, A., et al. (2013). Orange: Data Mining Toolbox in Python. J Mach Learn Res 14, 2349–2353.

    Google Scholar 

  • Denas, O., Sandstrom, R., Cheng, Y., Beal, K., Herrero, J., Hardison, R.C., and Taylor, J. (2015). Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution. BMC Genomics 16, 87.

    PubMed  PubMed Central  Google Scholar 

  • Derrien, T., Estellé, J., Marco Sola, S., Knowles, D.G., Raineri, E., Guigó, R., and Ribeca, P. (2012). Fast computation and applications of genome mappability. PLoS ONE 7, e30377.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, C., and He, X.F. (2004). Cluster structure of K-means clustering via principal component analysis. Lect Notes Artif Int 3056, 414–418.

    Google Scholar 

  • Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21.

    CAS  PubMed  Google Scholar 

  • Durruthy-Durruthy, J., Sebastiano, V., Wossidlo, M., Cepeda, D., Cui, J., Grow, E.J., Davila, J., Mall, M., Wong, W.H., Wysocka, J., et al. (2016). The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat Genet 48, 44–52.

    CAS  PubMed  Google Scholar 

  • Eicher, J.D., Landowski, C., Stackhouse, B., Sloan, A., Chen, W., Jensen, N., Lien, J.P., Leslie, R., and Johnson, A.D. (2015). GRASP v2.0: an update on the Genome-Wide Repository ofAssociations between SNPs and phenotypes. Nucleic Acids Res 43, D799–D804.

    CAS  PubMed  Google Scholar 

  • Göke, J., and Ng, H.H. (2016). CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome. EMBO Rep 17, 1131–1144.

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez, D., Luyten, A., Bartholdy, B., Zhou, Q., Kardosova, M., Ebralidze, A., Swanson, K.D., Radomska, H.S., Zhang, P., Kobayashi, S.S., et al. (2017). ZNF143 protein is an important regulator of the myeloid transcription factor C/EBPa. J Biol Chem 18924–18936.

    CAS  Google Scholar 

  • Grossmann, V., Bacher, U., Kohlmann, A., Butschalowski, K., Roller, A., Jeromin, S., Dicker, F., Kern, W., Schnittger, S., Haferlach, T., et al. (2012). Expression of CEBPA is reduced in RUNX1-mutated acute myeloid leukemia. Blood Cancer J e86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanoun, M., Zhang, D., Mizoguchi, T., Pinho, S., Pierce, H., Kunisaki, Y., Lacombe, J., Armstrong, S.A., Dührsen, U., and Frenette, P.S. (2014). Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an altered hematopoietic stem cell niche. Cell Stem Cell 15, 365–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C., Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38, 576–589.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huda, A., Bowen, N.J., Conley, A.B., and Jordan, I.K. (2011). Epigenetic regulation of transposable element derived human gene promoters. Gene 475, 39–48.

    CAS  PubMed  Google Scholar 

  • Hughes, D.C. (2000). MIRs as agents of mammalian gene evolution. Trends Genet 16, 60–62.

    CAS  PubMed  Google Scholar 

  • Jjingo, D., Conley, A.B., Wang, J., Marino-Ramirez, L., Lunyak, V.V., and Jordan, I.K. (2014). Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression. Mobile DNA 5, 14.

    PubMed  PubMed Central  Google Scholar 

  • Jjingo, D., Huda, A., Gundapuneni, M., Marino-Ramirez, L., and Jordan, I. K. (2011). Effect of the transposable element environment of human genes on gene length and expression. Genome Biol Evol 3, 259–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, E., Oliphant, T., and Peterson, P. (2015). SciPy: Open source scientific tools for Python, 2001. http://www.scipy.org 73, 86.

    Google Scholar 

  • Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., and Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110, 462–467.

    CAS  PubMed  Google Scholar 

  • Kamal, M., Xie, X., and Lander, E.S. (2006). A large family of ancient repeat elements in the human genome is under strong selection. Proc Natl Acad Sci USA 103, 2740–2745.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karin, M., Liu, Z., and Zandi, E. (1997). AP-1 function and regulation. Curr Opin Cell Biol 9, 240–246.

    CAS  PubMed  Google Scholar 

  • Karolchik, D., Hinrichs, A.S., Furey, T.S., Roskin, K.M., Sugnet, C.W., Haussler, D., and Kent, W.J. (2004). The UCSC Table Browser data retrieval tool. Nucleic Acids Res 493D-496.

  • Kohany, O., Gentles, A.J., Hankus, L., and Jurka, J. (2006). Annotation, submission and screening of repetitive elements in Repbase: Repbase Submitter and Censor. BMC BioInf 7, 474.

    Google Scholar 

  • Kulakovskiy, I.V., Medvedeva, Y.A., Schaefer, U., Kasianov, A.S., Vorontsov, I.E., Bajic, V.B., and Makeev, V.J. (2013). HOCOMOCO: a comprehensive collection of human transcription factor binding sites models. Nucleic Acids Res 41, D195–D202.

    CAS  PubMed  Google Scholar 

  • Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90–W97.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, C.C. (2011). Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2, 95–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamprecht, B., Walter, K., Kreher, S., Kumar, R., Hummel, M., Lenze, D., Köchert, K., Bouhlel, M.A., Richter, J., Soler, E., et al. (2010). Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 16, 571–579.

    CAS  PubMed  Google Scholar 

  • Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357–359.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, T.J., Miller, C., Ding, L., Raphael, B.J., Mungall, A.J., Robertson, A. G., Hoadley, K., Triche, T.J., Laird, P.W., et al. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 368, 2059–2074.

    PubMed  Google Scholar 

  • Liu, X., Zhang, Y., Chen, Y., Li, M., Zhou, F., Li, K., Cao, H., Ni, M., Liu, Y., Gu, Z., et al. (2017). In situ capture of chromatin interactions by biotinylated dCas9. Cell 170, 1028–1043.e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J., et al. (2017). The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res 45, D896–D901.

    CAS  PubMed  Google Scholar 

  • Mandoli, A., Singh, A.A., Prange, K.H.M., Tijchon, E., Oerlemans, M., Dirks, R., Ter Huurne, M., Wierenga, A.T.J., Janssen-Megens, E.M., Berentsen, K., et al. (2016). The hematopoietic transcription factors RUNX1 and ERG prevent AML1-ETO oncogene overexpression and onset of the apoptosis program in t(8;21) AMLs. Cell Rep 17, 2087–2100.

    CAS  PubMed  Google Scholar 

  • Manolio, T.A. (2010). Genomewide association studies and assessment of the risk of disease. N Engl J Med 363, 166–176.

    CAS  PubMed  Google Scholar 

  • Matsuo, H., Kajihara, M., Tomizawa, D., Watanabe, T., Saito, A.M., Fujimoto, J., Horibe, K., Kodama, K., Tokumasu, M., Itoh, H., et al. (2014). Prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia: a report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Blood Cancer J 4, e226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo, Y., MacLeod, R.A., Uphoff, C.C., Drexler, H.G., Nishizaki, C., Katayama, Y., Kimura, G., Fujii, N., Omoto, E., Harada, M., et al. (1997). Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins (11;9)(q23;p22p23). Leukemia 11, 1469–1477.

    CAS  PubMed  Google Scholar 

  • McLean, C.Y., Bristor, D., Hiller, M., Clarke, S.L., Schaar, B.T., Lowe, C. B., Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 28, 495–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milella, M., Kornblau, S.M., Estrov, Z., Carter, B.Z., Lapillonne, H., Harris, D., Konopleva, M., Zhao, S., Estey, E., and Andreeff, M. (2001). Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest 108, 851–859.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nica, A.C., and Dermitzakis, E.T. (2013). Expression quantitative trait loci: present and future. Phil Trans R Soc B 368, 20120362.

    PubMed  PubMed Central  Google Scholar 

  • Oran, B., and Weisdorf, D.J. (2012). Survival for older patients with acute myeloid leukemia: a population-based study. Haematologica 97, 1916–1924.

    PubMed  PubMed Central  Google Scholar 

  • Papaemmanuil, E., Gerstung, M., Bullinger, L., Gaidzik, V.I., Paschka, P., Roberts, N.D., Potter, N.E., Heuser, M., Thol, F., Bolli, N., et al. (2016). Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 374, 2209–2221.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquali, L., Gaulton, K.J., Rodríguez-Seguí, S.A., Mularoni, L., Miguel-Escalada, I., Akerman, İ., Tena, J.J., Morán, I., Gó mez-Marín, C., van de Bunt, M., et al. (2014). Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46, 136–143.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: Machine learning in Python. J Mach Learn Res 12, 2825–2830.

    Google Scholar 

  • Pelish, H.E., Liau, B.B., Nitulescu, I.I., Tangpeerachaikul, A., Poss, Z.C., Da Silva, D.H., Caruso, B.T., Arefolov, A., Fadeyi, O., Christie, A.L., et al. (2015). Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526, 273–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F., and Furlong, L.I. (2017). DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res D833–D839.

    PubMed  PubMed Central  Google Scholar 

  • Piriyapongsa, J., Mariño-Ramírez, L., and Jordan, I.K. (2007). Origin and evolution of human microRNAs from transposable elements. Genetics 176, 1323–1337.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polavarapu, N., Mariño-Ramírez, L., Landsman, D., McDonald, J.F., and Jordan, I.K. (2008). Evolutionary rates and patterns for human transcription factor binding sites derived from repetitive DNA. BMC Genomics 9, 226.

    PubMed  PubMed Central  Google Scholar 

  • Prange, K.H.M., Mandoli, A., Kuznetsova, T., Wang, S.Y., Sotoca, A.M., Marneth, A.E., van der Reijden, B.A., Stunnenberg, H.G., and Martens, J.H.A. (2017). MLL-AF9 and MLL-AF4 oncofusion proteins bind a distinct enhancer repertoire and target the RUNX1 program in 11q23 acute myeloid leukemia. Oncogene 36, 3346–3356.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ptasinska, A., Assi, S.A., Martinez-Soria, N., Imperato, M.R., Piper, J., Cauchy, P., Pickin, A., James, S.R., Hoogenkamp, M., Williamson, D., et al. (2014). Identification of a dynamic core transcriptional network in t(8;21) AML that regulates differentiation block and self-renewal. Cell Rep 8, 1974–1988.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rebollo, R., Romanish, M.T., and Mager, D.L. (2012). Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu Rev Genet 46, 21–42.

    CAS  PubMed  Google Scholar 

  • Rodić, N., and Burns, K.H. (2013). Long Interspersed Element-1 (LINE-1): Passenger or Driver in Human Neoplasms? PLoS Genet e1003402.

  • Rowley, J.D. (2008). Chromosomal translocations: revisited yet again. Blood 112, 2183–2189.

    CAS  PubMed  Google Scholar 

  • Rusiniak, M.E., Yu, M., Ross, D.T., Tolhurst, E.C., and Slack, J.L. (2000). Identification of B94 (TNFAIP2) as a potential retinoic acid target gene in acute promyelocytic leukemia. Cancer Res 60, 1824–1829.

    CAS  PubMed  Google Scholar 

  • Sen, D.R., Kaminski, J., Barnitz, R.A., Kurachi, M., Gerdemann, U., Yates, K.B., Tsao, H.W., Godec, J., LaFleur, M.W., Brown, F.D., et al. (2016). The epigenetic landscape of T cell exhaustion. Science 1165–1169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, A.M., Sanchez, M.J., Follows, G.A., Kinston, S., Donaldson, I.J., Green, A.R., and Göttgens, B. (2008). A novel mode of enhancer evolution: the Tall stem cell enhancer recruited a MIR element to specifically boost its activity. Genome Res 18, 1422–1432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solh, M., Yohe, S., Weisdorf, D., and Ustun, C. (2014). Core-binding factor acute myeloid leukemia: Heterogeneity, monitoring, and therapy. Am J Hematol 89, 1121–1131.

    PubMed  Google Scholar 

  • Stouffer, S.A. (1949). Studies in Social Psychology in World War II: The American Soldier: Adjustment During Army Life (Princeton University Press).

  • Su, M., Han, D., Boyd-Kirkup, J., Yu, X., and Han, J.D.J. (2014). Evolution of Alu elements toward enhancers. Cell Rep 7, 376–385.

    CAS  PubMed  Google Scholar 

  • Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545–15550.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thornburg, B.G., Gotea, V., and Makalowski, W. (2006). Transposable elements as a significant source of transcription regulating signals. Gene 365, 104–110.

    CAS  PubMed  Google Scholar 

  • Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28, 511–515.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trizzino, M., Park, Y.S., Holsbach-Beltrame, M., Aracena, K., Mika, K., Caliskan, M., Perry, G.H., Lynch, V.J., and Brown, C.D. (2017). Transposable elements are the primary source of novelty in primate gene regulation. Genome Res 27, 1623–1633.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valk, P.J.M., Verhaak, R.G.W., Beijen, M.A., Erpelinck, C.A.J., Barjesteh van Waalwijk van Doorn-Khosrovani, S., Boer, J.M., Beverloo, H.B., Moorhouse, M.J., van der Spek, P.J., Löwenberg, B., et al. (2004). Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350, 1617–1628.

    CAS  PubMed  Google Scholar 

  • Vinciguerra, M., Vivacqua, A., Fasanella, G., Gallo, A., Cuozzo, C., Morano, A., Maggiolini, M., and Musti, A.M. (2004). Differential phosphorylation of c-Jun and JunD in response to the epidermal growth factor is determined by the structure of MAPK targeting sequences. J Biol Chem 279, 9634–9641.

    CAS  PubMed  Google Scholar 

  • Wolff, E.M., Byun, H.M., Han, H.F., Sharma, S., Nichols, P.W., Siegmund, K.D., Yang, A.S., Jones, P.A., and Liang, G. (2010). Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6, e1000917.

    PubMed  PubMed Central  Google Scholar 

  • Xie, M., Hong, C., Zhang, B., Lowdon, R.F., Xing, X., Li, D., Zhou, X., Lee, H.J., Maire, C.L., Ligon, K.L., et al. (2013). DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet 45, 836–841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, W., Zhang, X., Fan, X., Li, D., and Qiao, Z. (2006). Effect of ICAM-1 and LFA-1 in hyperleukocytic acute myeloid leukaemia. Clin Lab Haematol 28, 177–182.

    CAS  PubMed  Google Scholar 

  • Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B. E., Nussbaum, C., Myers, R.M., Brown, M., Li, W., et al. (2008). Model-based analysis of ChIP-Seq (MACS). Genome Biol 9, R137.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, C., Martinez, E., Di Marcantonio, D., Solanki-Patel, N., Aghayev, T., Peri, S., Ferraro, F., Skorski, T., Scholl, C., Fröhling, S., et al. (2017). JUN is a key transcriptional regulator of the unfolded protein response in acute myeloid leukemia. Leukemia 31, 1196–1205.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (91749205, 91329302, and 31210103916), Ministry of Science and Technology of China (2015CB964803 and 2016YFE0108700), and a Max Planck fellowship to J. D.J.H. This work was also supported by the National Human Genome Research Institute (NHGRI) and the National Cancer Institute (1R01CA197139), NHGRI (1UM1HG009408), and the National Health Lung and Blood Institute (1R01HL138424) to NA. R.S.H is a Recipient of a Fellowship Scholarship from the American Healthcare Professionals and Friends for Medicine in Israel. This study made use of data generated by the Blueprint Consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nadav Ahituv or Jing-Dong J. Han.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Cao, Y., Halevy, R.S. et al. Characterization of functional transposable element enhancers in acute myeloid leukemia. Sci. China Life Sci. 63, 675–687 (2020). https://doi.org/10.1007/s11427-019-1574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1574-x

Keywords

Navigation