Skip to main content

Advertisement

Log in

RLIP76 Targeted Therapy for Kidney Cancer

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Despite recent improvements in chemotherapeutic approaches to treating kidney cancer, this malignancy remains deadly if not found and removed at an early stage of the disease. Kidney cancer is highly drug-resistant, which may at least partially result from high expression of transporter proteins in the cell membranes of kidney cells. Although these transporter proteins can contribute to drug-resistance, targeting proteins from the ATP-binding cassette transporter family has not been effective in reversing drug-resistance in kidney cancer. Recent studies have identified RLIP76 as a key stress-defense protein that protects normal cells from damage caused by stress conditions, including heat, ultra-violet light, X-irradiation, and oxidant/electrophilic toxic chemicals, and is crucial for protecting cancer cells from apoptosis. RLIP76 is the predominant glutathione-electrophile-conjugate (GS-E) transporter in cells, and inhibiting it with antibodies or through siRNA or antisense causes apoptosis in many cancer cell types. To date, blocking of RLIP76, either alone or in combination with chemotherapeutic drugs, as a therapeutic strategy for kidney cancer has not yet been evaluated in human clinical trials, although there is considerable potential for RLIP76 to be developed as a therapeutic agent for kidney cancer. In the present review, we discuss the mechanisms underlying apoptosis caused by RLIP76 depletion, the role of RLIP76 in clathrin-dependent endocytosis deficiency, and the feasibility of RLIP76-targeted therapy for kidney cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

4HNE:

4-hydroxy nonenal

CDE:

Clathrin-dependent endocytosis

GS-E:

Glutathione electrophile conjugates

GSH:

Glutathione

PI3K:

Phosphatidylinositol 3-kinase

RCC:

Renal cell carcinoma

RLIP76:

Ral-interacting protein

VEGF:

Vascular endothelial growth factor

VHL :

Von Hippel-Lindau

REFERENCES

  1. Atkins MB, Ernstoff MS, Figlin RA, Flaherty KT, George DJ, Kaelin WG, et al. Innovations and challenges in renal cell carcinoma: summary statement from the Second Cambridge Conference. Clin Cancer Res. 2007;2:667s–70s.

    Article  Google Scholar 

  2. Linehan WM, Vasselli J, Srinivasan R, Walther MM, Merino M, Choyke P, et al. Genetic basis of cancer of the kidney: disease-specific approaches to therapy. Clin Cancer Res. 2004;10:6282S–9S.

    Article  CAS  PubMed  Google Scholar 

  3. Linehan WM, Bratslavsky G, Pinto PA, Schmidt LS, Neckers L, Bottaro D, et al. Molecular diagnosis and therapy of kidney cancer. Annu Rev Med. 2010;61:329–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Costa LJ, Drabkin HA. Renal cell carcinoma: new developments in molecular biology and potential for targeted therapies. Oncologist. 2007;12:1404–15.

    Article  CAS  PubMed  Google Scholar 

  5. Shukla S, Wu CP, Ambudkar SV. Development of inhibitors of ATP-binding cassette drug transporters: present status and challenges. Expert Opin Drug Metab Toxicol. 2008;4:205–23.

    Article  CAS  PubMed  Google Scholar 

  6. Modok S, Mellor HR, Callaghan R. Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer. Curr Opin Pharmacol. 2006;6:350–4.

    Article  CAS  PubMed  Google Scholar 

  7. Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, et al. Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol. 2008;75:1302–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kim WJ, Kakehi Y, Kinoshita H, Arao S, Fukumoto M, Yoshida O. Expression patterns of multidrug-resistance (MDR1), multidrug resistance-associated protein (MRP), glutathione-S-transferase-pi (GST-pi) and DNA topoisomerase II (Topo II) genes in renal cell carcinomas and normal kidney. J Urol. 1996;156:506–11.

    Article  CAS  PubMed  Google Scholar 

  9. Awasthi S, Singhal SS, Srivastava SK, Zimniak P, Bajpai KK, Saxena M, et al. Adenosine triphosphate-dependent transport of doxorubicin, daunomyicn, and vinblastine in human tissues by a mechanism distinct from the P-glycoprotein. J Clin Invest. 1994;93:958–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Awasthi S, Cheng J, Singhal SS, Saini MK, Pandya U, Pikula S, et al. Novel function of human RLIP76: ATP-dependent transport of glutathione-conjugates and doxorubicin. Biochemistry. 2000;39:9327–34.

    Article  CAS  PubMed  Google Scholar 

  11. Awasthi S, Singhal SS, Sharma R, Zimniak P, Awasthi YC. Transport of glutathione-conjugates and chemotherapeutic drugs by RLIP76: a novel link between G-protein and tyrosine-kinase signaling and drug-resistance. Int J Cancer. 2003;106:635–46.

    Article  CAS  PubMed  Google Scholar 

  12. Stuckler D, Singhal J, Singhal SS, Yadav S, Awasthi YC, Awasthi S. RLIP76 transports vinorelbine and mediates drug resistance in non-small cell lung cancer. Cancer Res. 2005;65:991–8.

    CAS  PubMed  Google Scholar 

  13. Awasthi S, Singhal SS, Awasthi YC, Martin B, Woo J-H, Cunningham CC, et al. RLIP76 and cancer. Clin Cancer Res. 2008;14:4372–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lin JT, Sharma R, Grady JJ, Awasthi S. A flow cell assay for evaluation of whole cell drug efflux kinetics: analysis of paclitaxel efflux in CCRF-CEM leukemia cells over-expressing p-glycoprotein. Drug Metab Dispos. 2001;29:103–10.

    CAS  PubMed  Google Scholar 

  15. Bankhead C. Three new drugs available to fight kidney cancer. J Natl Cancer Inst. 2006;98:1181–2.

    Article  PubMed  Google Scholar 

  16. Adnane L, Trail PA, Taylor I, Wilhelm SM. Sorafenib (BAY 43–9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol. 2006;407:597–612.

    Article  CAS  PubMed  Google Scholar 

  17. Cohen HT, McGovern FJ. Renal-cell carcinoma. N Engl J Med. 2005;353:2477–90.

    Article  CAS  PubMed  Google Scholar 

  18. Brugarolas J. Renal-cell carcinoma—molecular pathways and therapies. N Engl J Med. 2007;356:185–7.

    Article  CAS  PubMed  Google Scholar 

  19. Singhal SS, Yadav S, Roth C, Singhal J. RLIP76: a novel glutathione-conjugate and multi-drug transporter. Biochem Pharmacol. 2009;77:761–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Vatsyayan R, Lelsani P, Awasthi S, Singhal SS. RLIP76: a versatile transporter and an emerging target for cancer therapy. Biochem Pharmacol. 2010;79:1699–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Singhal SS, Singhal J, Yadav S, Sahu M, Awasthi YC, Awasthi S. RLIP76: a target for kidney cancer therapy. Cancer Res. 2009;69:4244–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Singhal SS, Sehrawat A, Sahu M, Singhal P, Vatsyayan R, Lelsani P, et al. RLIP76 transports sunitinib and sorafenib and mediates drug resistance in kidney cancer. Int J Cancer. 2010;126:1327–38.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Wu Z, Owens C, Chandra N, Popovic K, Conaway M, Theodorescu D. RalBP1 is necessary for metastasis of human cancer cell lines. Neoplasia. 2010;12:1003–12.

    Article  PubMed  Google Scholar 

  24. Lee S, Wurtzel JG, Singhal SS, Awasthi S, Goldfinger LE. RALBP1/RLIP76 depletion in mice suppresses tumor growth by inhibiting tumor neovascularization. Cancer Res. 2012;72:5165–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mollberg NM, Steinert G, Aigner M, Hamm A, Lin F-J, Elbers H. Over-expression of RalBP1 in colorectal cancer is an independent predictor of poor survival and early tumor relapse. Cancer Biol Ther. 2012;1:694–700.

    Article  Google Scholar 

  26. Goldfinger LE, Lee S. Emerging treatments in lung cancer—targeting the RLIP76 molecular transporter. Lung Cancer. 2013;4:61–9.

    Google Scholar 

  27. Wang Q, Wang JY, Zhang XP, Lv ZW, Fu D, Lu YC, et al. RLIP76 is over-expressed in human glioblastomas and is required for proliferation, tumorigenesis and suppression of apoptosis. Carcinogenesis. 2013;34:916–26.

    Article  CAS  PubMed  Google Scholar 

  28. Wang Q, Qian J, Wang JY, Luo C, Chen J, Hu G, et al. Knockdown of RLIP76 expression by RNA interference inhibits invasion, induces cell cycle arrest, and increases chemosensitivity to the anticancer drug temozolomide in glioma cells. J Neurooncol. 2013;112:73–82.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Song X, Gong W, Zhu Z, Liu X, Hou Q, et al. RLIP76 blockade by siRNA inhibits proliferation, enhances apoptosis, and suppresses invasion in HT29 colon cancer cells. Cell Biochem Biophys. 2015;71:579–85.

    Article  CAS  PubMed  Google Scholar 

  30. Eto M, Naito S. Molecular targeting therapy for renal cell carcinoma. Int J Clin Oncol. 2006;11:209–13.

    Article  CAS  PubMed  Google Scholar 

  31. Sjölund J, Boström AK, Lindgren D, Manna S, Moustakas A, Ljungberg B, et al. The notch and TGF-β signaling pathways contribute to the aggressiveness of clear cell renal cell carcinoma. PLoS One. 2011;6, e23057.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Rini BI, Atkins MB. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 2009;10:992–1000.

    Article  CAS  PubMed  Google Scholar 

  33. Hudes G, Carducci M, Tomczak P. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med. 2007;356:2271–81.

    Article  CAS  PubMed  Google Scholar 

  34. Bhojani N, Jeldres C, Patard JJ, Perrotte P, Suardi N, Hutterer F, et al. Toxicities associated with the administration of sorafenib, sunitinib, and temsirolimus and their management in patients with metastatic renal cell carcinoma. Eur Urol. 2008;53:917–30.

    Article  CAS  PubMed  Google Scholar 

  35. Thomas GV. mTOR and cancer: reason for dancing at the crossroads? Curr Opin Genet Dev. 2006;16:78–84.

    Article  CAS  PubMed  Google Scholar 

  36. Jonasch E, Futreal PA, Davis IJ, Bailey ST, Kim WY, Brugarolas J, et al. State of the science: an update on renal cell carcinoma. Mol Cancer Res. 2012;10:859–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29.

    Article  PubMed  Google Scholar 

  38. Singhal SS, Sehrawat A, Metha A, Sahu M, Awasthi S. Functional reconstitution of RLIP76 catalyzing ATP-dependent transport of glutathione-conjugate. Int J Oncol. 2009;34:191–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemo-immunity defense system. Physiol Rev. 2006;86:1179–236.

    Article  CAS  PubMed  Google Scholar 

  40. Borst P, Evers R, Kool M, Wijnholds J. The multidrug resistance protein family. Biochim Biophys Acta. 1999;1461:347–57.

    Article  CAS  PubMed  Google Scholar 

  41. Awasthi S, Singhal SS, Yadav S, Singhal J, Drake K, Nadkar A, et al. RALBP1 is a major determinant of radiation sensitivity. Cancer Res. 2005;65:6022–8.

    Article  CAS  PubMed  Google Scholar 

  42. Singhal J, Singhal SS, Yadav S, Warnke M, Yacoub A, Dent P, et al. RLIP76 in defense of radiation poisoning. Int J Radiat Oncol Biol Phys. 2008;72:553–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Warnke MM, Wanigasekara E, Singhal SS, Singhal J, Awasthi S, Armstrong DW. The determination of glutathione-4-hydroxynonenal (GS-HNE), E-4-hydroxynonenal (HNE), and E-1-hydroxynon-2-en-4-one (HNO) in mouse liver tissue by LC-ESI-MS. Analyt Bioanal Chem. 2008;392:1325–33.

    Article  CAS  Google Scholar 

  44. Awasthi S, Srivastava SK, Ahmad F, Ahmad H, Ansari GA. Interactions of glutathione S-transferase-pi with ethacrynic acid and its glutathione conjugate. Biochim Biophys Acta. 1993;1164:173–8.

    Article  CAS  PubMed  Google Scholar 

  45. Singhal SS, Yadav S, Singhal J, Sahu M, Sehrawat A, Awasthi S. Diminished drug transport and augmented radiation sensitivity caused by loss of RLIP76. FEBS Lett. 2008;582:3408–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Singhal SS, Singhal J, Yadav S, Dwivedi S, Boor P, Awasthi YC, et al. Regression of lung and colon cancer xenografts by depleting or inhibiting RLIP76 (RALBP1). Cancer Res. 2007;67:4382–9.

    Article  CAS  PubMed  Google Scholar 

  47. Singhal SS, Awasthi YC, Awasthi S. Regression of melanoma in a murine model by RLIP76 depletion. Cancer Res. 2006;66:2354–60.

    Article  CAS  PubMed  Google Scholar 

  48. Singhal SS, Roth C, Leake K, Singhal J, Yadav S, Awasthi S. Regression of prostate cancer xenografts by RLIP76 depletion. Biochem Pharmacol. 2009;77:1074–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Singhal J, Yadav S, Nagaprashantha L, Vatsyayan R, Singhal SS, Awasthi S. Targeting p53 null neuroblastomas through RLIP76. Cancer Prev Res. 2011;4:879–89.

    Article  CAS  Google Scholar 

  50. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30:445–600.

    Article  CAS  PubMed  Google Scholar 

  51. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128.

    Article  CAS  PubMed  Google Scholar 

  52. Awasthi YC, Sharma R, Sharma A, Yadav S, Singhal SS, Chaudary P, et al. Self-regulatory role of 4-HNE in signaling for stress-induced programmed cell death. Free Radic Biol Med. 2008;45:111–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kramer MA, Tracy TS. Studying cytochrome P450 kinetics in drug metabolism. Expert Opin Drug Metab Toxicol. 2008;4:591–603.

    Article  CAS  PubMed  Google Scholar 

  54. Wijnholds J, Evers R, van Leusden MR, Mol CA, Zaman GJ, Mayer U, et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med. 1997;3:1275–9.

    Article  CAS  PubMed  Google Scholar 

  55. Yamaguchi A, Urano T, Goi T, Feig LA. An eps homology (EH) domain protein that binds to the Ral-GTPase target, RalBP1. J Biol Chem. 1997;272:31230–4.

    Article  CAS  PubMed  Google Scholar 

  56. Jullien-Flores V, Mahe Y, Mirey G, Leprince C, Meunier-Bisceuil B, Sorkin A, et al. RLIP76, an effector of the GTPase Ral, interacts with the AP2 complex: involvement of the Ral pathway in receptor endocytosis. J Cell Sci. 2000;113:2837–44.

    CAS  PubMed  Google Scholar 

  57. Singhal SS, Wickramarachchi D, Yadav S, Singhal J, Leake K, Vatsyayan R, et al. Glutathione-conjugate transport by RLIP76 is required for clathrin-dependent endocytosis and chemical carcinogenesis. Mol Cancer Ther. 2011;10:16–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Awasthi S, Singhal SS, Singhal J, Cheng J, Zimniak P, Awasthi YC. Role of RLIP76 in lung cancer doxorubicin resistance: doxorubicin transport in lung cancer by RLIP76. Int J Oncol. 2003;22:713–20.

    CAS  PubMed  Google Scholar 

  59. Awasthi S, Singhal SS, Singhal J, Yang Y, Zimniak P, Awasthi YC. Role of RLIP76 in lung cancer doxorubicin resistance: anti-RLIP76 antibodies trigger apoptosis in lung cancer cells and synergistically increase doxorubicin cytotoxicity. Int J Oncol. 2003;22:721–32.

    CAS  PubMed  Google Scholar 

  60. Jullien-Flores V, Dorseuil O, Romero F, Letourneur F, Saragosti S, Berger R, et al. Bridging Ral GTPase to Rho pathways. RLIP, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem. 1995;270:22473–7.

    Article  CAS  PubMed  Google Scholar 

  61. Rosse C, L’Hoste S, Offner N, Picard A, Camonis JH. RLIP, an effector of the Ral-GTPases, is a platform for Cdk1 to phosphorylate epsin during the switch off of endocytosis in mitosis. J Biol Chem. 2003;278:30597–604.

    Article  CAS  PubMed  Google Scholar 

  62. Hu Y, Mivechi NF. HSF-1 interacts with Ral-binding protein 1 in a stress-responsive, multi-protein complex with HSP90 in vivo. J Biol Chem. 2003;278:17299–306.

    Article  CAS  PubMed  Google Scholar 

  63. Singhal SS, Yadav S, Singhal J, Zajac E, Drake K, Awasthi YC, et al. Depletion of RLIP76 sensitizes lung cancer cells to doxorubicin. Biochem Pharmacol. 2005;70:481–8.

    Article  CAS  PubMed  Google Scholar 

  64. Singhal SS, Yadav S, Singhal J, Drake K, Awasthi YC, Awasthi S. The role of PKCα and RLIP76 in transport-mediated doxorubicin-resistance in lung cancer. FEBS Lett. 2005;579:4635–41.

    Article  CAS  PubMed  Google Scholar 

  65. Sharma R, Singhal SS, Wickramarachchi D, Awasthi YC, Awasthi S. RLIP76 (RALBP1)-mediated transport of leukotriene C4 (LTC4) in cancer cells: implications in drug resistance. Int J Cancer. 2004;112:934–42.

    Article  CAS  PubMed  Google Scholar 

  66. Yadav S, Singhal SS, Singhal J, Wickramarachchi D, Kuntson E, Albrecht TB, et al. Identification of membrane anchoring domains of RLIP76 using deletion mutants analyses. Biochemistry. 2004;43:16243–53.

    Article  CAS  PubMed  Google Scholar 

  67. Oosterhoff JK, Penninkhof F, Brinkmann AO, Anton Grootegoed J, Blok LJ. REPS2/POB1 is downregulated during human prostate cancer progression and inhibits growth factor signalling in prostate cancer cells. Oncogene. 2003;22:2920–5.

    Article  CAS  PubMed  Google Scholar 

  68. Singhal SS, Yadav S, Drake K, Singhal J, Awasthi S. Hsf-1 and POB1 induce drug-sensitivity and apoptosis by inhibiting Ralbp1. J Biol Chem. 2008;283:19714–29.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Park SH, Weinberg RA. A putative effector of Ral has homology to Rho/Rac GTPase-activating proteins. Oncogene. 1995;11:2349–55.

    CAS  PubMed  Google Scholar 

  70. Cantor SB, Urano T, Feig LA. Identification and characterization of Ral-binding-protein 1, a potential downstream target of Ral GTPases. Mol Cell Biol. 1995;15:4578–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Singhal SS, Awasthi S. Glutathione-conjugate transport and stress-response signaling: role of RLIP76. In: Awasthi YC, editor. Toxicology of glutathione S-Transferases. Boca Raton: CRC Press; 2006. p. 231–56.

    Chapter  Google Scholar 

  72. Patel PH, Chadalavada RSV, Chaganti RSK, Motzer RJ. Targeting von Hippel-Lindau pathway in renal cell carcinoma. Clin Cancer Res. 2006;12:7215–20.

    Article  CAS  PubMed  Google Scholar 

  73. Kaelin WG. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008;11:865–73.

    Article  Google Scholar 

  74. Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW. Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci. 2000;97:10430–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol. 2000;2:423–7.

    Article  CAS  PubMed  Google Scholar 

  76. Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D, et al. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res. 2006;66:2000–11.

    Article  CAS  PubMed  Google Scholar 

  77. Schoenfeld A, Davidowitz EJ, Burk RD. A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc Natl Acad Sci. 1998;95:8817–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kim WY, Kaelin WG. Role of VHL gene mutation in human cancer. J Clin Oncol. 2004;22:4991–5004.

    Article  CAS  PubMed  Google Scholar 

  79. Ohh M, Kaelin WG. VHL and kidney cancer. Methods Mol Biol. 2003;222:167–83.

    CAS  PubMed  Google Scholar 

  80. Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther. 2005;4:677–85.

    Article  CAS  PubMed  Google Scholar 

  81. Larkin JM, Eisen T. Kinase inhibitors in the treatment of renal cell carcinoma. Crit Rev Oncol Hematol. 2006;60:216–26.

    Article  PubMed  Google Scholar 

  82. Sumitomo M, Asano T, Asakuma J, Asano T, Horiguchi A, Hayakawa M. ZD1839 modulates paclitaxel response in renal cancer by blocking paclitaxel-induced activation of the epidermal growth factor receptor-extracellular signal-regulated kinase pathway. Clin Cancer Res. 2004;10:794–801.

    Article  CAS  PubMed  Google Scholar 

  83. Sourbier C, Lindner V, Lang H, Agouni A, Schordan E, Danilin S, et al. The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy. Cancer Res. 2006;66:5130–42.

    Article  CAS  PubMed  Google Scholar 

  84. Ishitoya S, Kurazono H, Nishiyama H, Nakamura E, Kamoto T, Habuchi T, et al. Verotoxin induces rapid elimination of human renal tumor xenografts in SCID mice. J Urol. 2004;171:1309–13.

    Article  CAS  PubMed  Google Scholar 

  85. Inamoto T, Yamochi T, Ohnuma K, Iwata S, Kina S, Inamoto S, et al. Anti-CD26 monoclonal antibody-mediated G1-S arrest of human renal clear cell carcinoma Caki-2 is associated with retinoblastoma substrate dephosphorylation, cyclin-dependent kinase 2 reduction, p27(kip1) enhancement, and disruption of binding to the extracellular matrix. Clin Cancer Res. 2006;12:3470–7.

    Article  CAS  PubMed  Google Scholar 

  86. Sourbier C, Danilin S, Lindner V, Steger J, Rothhut S, Meyer N, et al. Targeting the nuclear factor-kappaB rescue pathway has promising future in human renal cell carcinoma therapy. Cancer Res. 2007;67:11668–76.

    Article  CAS  PubMed  Google Scholar 

  87. Sjölund J, Johansson M, Manna S, Norin C, Pietras A, Beckman S, et al. Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J Clin Invest. 2008;118:217–28.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Yao K, Xing H, Yang W, Liao A, Wu B, Li Y, et al. Knockdown of RLIP76 expression by RNA interference inhibits proliferation, enhances apoptosis, and increases chemo-sensitivity to daunorubicin in U937 leukemia cells. Tumor Biol. 2014;35:8023–31.

    Article  CAS  Google Scholar 

  89. Drake KJ, Singhal J, Yadav S, Nadkar A, Pungaliya C, Singhal SS, et al. RALBP1/RLIP76 mediates multidrug resistance. Int J Oncol. 2007;30:139–44.

    CAS  PubMed  Google Scholar 

  90. Smith SC, Oxford G, Baras AS, Owens C, Havaleshko D, Brautigan DL, et al. Expression of Ral GTPases, their effectors and activators in human bladder cancer. Clin Cancer Res. 2007;13:3803–13.

    Article  CAS  PubMed  Google Scholar 

  91. Herlevsen MC, Theodorescu D. Mass spectroscopic phosphoprotein mapping of Ral binding protein 1 (RalBP1/Rip1/RLIP76). Biochem Biophys Res Commun. 2007;362:56–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Hudson ME, Pozdnyakova I, Haines K, Mor G, Snyder M. Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc Natl Acad Sci. 2007;104:17494–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was supported by the National Institutes of Health grant (CA 77495) and funds from the Perricone Family Foundation, Los Angeles, CA. Funding from Beckman Research Institute of City of Hope is also acknowledged. We apologize to all colleagues whose work we could not cite due to space constraints.

Conflicts of interest

No conflict of interest exists for any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad S. Singhal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, S.S., Singhal, J., Figarola, J. et al. RLIP76 Targeted Therapy for Kidney Cancer. Pharm Res 32, 3123–3136 (2015). https://doi.org/10.1007/s11095-015-1723-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1723-1

KEY WORDS

Navigation