Skip to main content

Advertisement

Log in

Recovery of T-cell receptor V(D)J recombination reads from lower grade glioma exome files correlates with reduced survival and advanced cancer grade

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Background

The immune system plays an important role in cancer survival and disease progression, but the role of the immune system in lower grade glioma (LGG) is largely unknown

Methods

To investigate the relationship between lymphocyte infiltration into the LGG microenvironment and LGG survival, we used a genomics approach to recover productive V(D)J recombination sequences from primary tumor, whole exome sequence files available via the cancer genome atlas

Results

Increased T-cell receptor V(D)J read recovery, indicating increased T-lymphocyte infiltration into the primary tumor site, strongly correlated with decreased overall and disease-free survival; and with a more advanced cancer grade. In addition, this result was more significant than related results obtainable using RNASeq-based, T-cell biomarkers, similar to a recently reported case for pancreatic cancer, where the recovery of BCR recombination reads from WXS files clearly associated with reduced survival, despite the fact that no such association was demonstrable with B-cell based, RNASeq biomarkers

Conclusions

Overall, the results presented here support V(D)J recombination read recovery, from whole exome files, as a uniquely useful biomarker for distinct LGG survival rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BCR:

B-cell receptor

HUGO:

Human genome organization

KM:

Kaplan–Meier survival curve

LGG:

Lower grade glioma

TCGA:

The cancer genome atlas

TCR:

T-cell receptor

TRA, TRB:

T-cell receptor alpha and beta

WHO:

World health organization

WXS:

Whole exome sequence file

References

  1. de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7:411–423. https://doi.org/10.1016/j.ccr.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  2. Parrish RA, Karsten MB, McRae AT, Moretz WH (1968) Segmental Crohn’s colitis associated with adenocarcinoma. Am J Surg 115:371–375

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  4. Callahan BM, Yavorski JM, Tu YN, Tong WL, Kinskey JC, Clark KR, Fawcett TJ, Blanck G (2018) T-cell receptor-beta V and J usage, in combination with particular HLA class I and class II alleles, correlates with cancer survival patterns. Cancer Immunol Immunother 67:885–892. https://doi.org/10.1007/s00262-018-2139-7

    Article  CAS  PubMed  Google Scholar 

  5. Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, Jiang T, Wu A (2014) Tumour-infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical outcome in glioma. Br J Cancer 110:2560–2568. https://doi.org/10.1038/bjc.2014.162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Samy MD, Tong WL, Yavorski JM, Sexton WJ, Blanck G (2017) T cell receptor gene recombinations in human tumor specimen exome files: detection of T cell receptor-beta VDJ recombinations associates with a favorable oncologic outcome for bladder cancer. Cancer Immunol Immunother 66:403–410. https://doi.org/10.1007/s00262-016-1943-1

    Article  CAS  PubMed  Google Scholar 

  7. Disis ML (2010) Immune regulation of cancer. J Clin Oncol 28:4531–4538. https://doi.org/10.1200/JCO.2009.27.2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Szekeres K, Koul R, Mauro J, Lloyd M, Johnson J, Blanck G (2014) An Oct-1-based, feed-forward mechanism of apoptosis inhibited by co-culture with Raji B-cells: towards a model of the cancer cell/B-cell microenvironment. Exp Mol Pathol 97:585–589. https://doi.org/10.1016/j.yexmp.2014.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang K, Liu J, Li J (2018) IL-35-producing B cells in gastric cancer patients. Medicine (Baltimore) 97:e0710. https://doi.org/10.1097/MD.0000000000010710

    Article  CAS  Google Scholar 

  10. Kinskey JC, Tu YN, Tong WL, Yavorski JM, Blanck G (2018) Recovery of immunoglobulin VJ recombinations from pancreatic cancer exome files strongly correlates with reduced survival. Cancer Microenviron 11:51–59. https://doi.org/10.1007/s12307-018-0205-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gill TR, Samy MD, Butler SN, Mauro JA, Sexton WJ, Blanck G (2016) Detection of productively rearranged TcR-alpha V-J sequences in TCGA exome files: implications for tumor immunoscoring and recovery of antitumor T-cells. Cancer Inform 15:23–28. https://doi.org/10.4137/CIN.S35784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levy E, Marty R, Garate Calderon V, Woo B, Dow M, Armisen R, Carter H, Harismendy O (2016) Immune DNA signature of T-cell infiltration in breast tumor exomes. Sci Rep 6:30064. https://doi.org/10.1038/srep30064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown SD, Raeburn LA, Holt RA (2015) Profiling tissue-resident T cell repertoires by RNA sequencing. Genome Med 7:125. https://doi.org/10.1186/s13073-015-0248-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li B, Li T, Pignon JC, Wang B, Wang J, Shukla SA, Dou R, Chen Q, Hodi FS, Choueiri TK, Wu C, Hacohen N, Signoretti S, Liu JS, Liu XS (2016) Landscape of tumor-infiltrating T cell repertoire of human cancers. Nature Genet 48:725–732. https://doi.org/10.1038/ng.3581

    Article  CAS  PubMed  Google Scholar 

  15. Tu YN, Tong WL, Samy MD, Yavorski JM, Kim M, Blanck G (2017) Assessing microenvironment immunogenicity using tumor specimen exomes: co-detection of TcR-alpha/beta V(D)J recombinations correlates with PD-1 expression. Int J Cancer 140:2568–2576. https://doi.org/10.1002/ijc.30675

    Article  CAS  PubMed  Google Scholar 

  16. Mai AT, Tong WL, Tu YN, Blanck G (2018) TcR-alpha recombinations in renal cell carcinoma exome files correlate with an intermediate level of T-cell exhaustion biomarkers. Int Immunol 30:35–40. https://doi.org/10.1093/intimm/dxx074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tu YN, Tong WL, Yavorski JM, Blanck G (2018) Immunogenomics: a negative prostate cancer outcome associated with TcR-gamma/delta recombinations. Cancer Microenviron 11:41–49. https://doi.org/10.1007/s12307-018-0204-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ping Z, Siegal GP, Almeida JS, Schnitt SJ, Shen D (2014) Mining genome sequencing data to identify the genomic features linked to breast cancer histopathology. J Pathol Inform 5:3. https://doi.org/10.4103/2153-3539.126147

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1. https://doi.org/10.1126/scisignal.2004088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404. https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  21. Kioussis D, Ellmeier W (2002) Chromatin and CD4, CD8A and CD8B gene expression during thymic differentiation. Nature Rev Immunol 2:909–919. https://doi.org/10.1038/nri952

    Article  CAS  Google Scholar 

  22. Tai Y, Wang Q, Korner H, Zhang L, Wei W (2018) Molecular mechanisms of T cells activation by dendritic cells in autoimmune diseases. Front Pharmacol 9:642. https://doi.org/10.3389/fphar.2018.00642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maxwell R, Jackson CM, Lim M (2017) Clinical trials investigating immune checkpoint blockade in glioblastoma. Curr Treat Options Oncol 18:51. https://doi.org/10.1007/s11864-017-0492-y

    Article  PubMed  Google Scholar 

  24. Edwards KM, Davis JE, Browne KA, Sutton VR, Trapani JA (1999) Anti-viral strategies of cytotoxic T lymphocytes are manifested through a variety of granule-bound pathways of apoptosis induction. Immunol Cell Biol 77:76–89. https://doi.org/10.1046/j.1440-1711.1999.00799.x

    Article  CAS  PubMed  Google Scholar 

  25. Huang Y, de Leval L, Gaulard P (2013) Molecular underpinning of extranodal NK/T-cell lymphoma. Best Pract Res Clin Haematol 26:57–74. https://doi.org/10.1016/j.beha.2013.04.006

    Article  CAS  PubMed  Google Scholar 

  26. Marcucci F, Rumio C, Corti A (2017) Tumor cell-associated immune checkpoint molecules—drivers of malignancy and stemness. Biochim Biophys Acta 1868:571–583. https://doi.org/10.1016/j.bbcan.2017.10.006

    Article  CAS  Google Scholar 

  27. Reck M (2018) Pembrolizumab as first-line therapy for metastatic non-small-cell lung cancer. Immunotherapy 10:93–105. https://doi.org/10.2217/imt-2017-0121

    Article  CAS  PubMed  Google Scholar 

  28. Nagarajan UM, Bushey A, Boss JM (2002) Modulation of gene expression by the MHC class II transactivator. J Immunol 169:5078–5088

    Article  PubMed  Google Scholar 

  29. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, Jiang P, Shen H, Aster JC, Rodig S, Signoretti S, Liu JS, Liu XS (2016) Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 17:174. https://doi.org/10.1186/s13059-016-1028-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhai L, Ladomersky E, Lauing KL, Wu M, Genet M, Gritsina G, Gyorffy B, Brastianos PK, Binder DC, Sosman JA, Giles FJ, James CD, Horbinski C, Stupp R, Wainwright DA (2017) Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival. Clin Cancer Res 23:6650–6660. https://doi.org/10.1158/1078-0432.CCR-17-0120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaman S, Chobrutskiy BI, Patel JS, Callahan BM, Tong WL, Blanck G (2018) Mutant cytoskeletal and ECM peptides sensitive to the ST14 protease are associated with a worse outcome for glioblastoma multiforme. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2018.06.141

    Article  PubMed  Google Scholar 

  32. Sims JS, Grinshpun B, Feng Y, Ung TH, Neira JA, Samanamud JL, Canoll P, Shen Y, Sims PA, Bruce JN (2016) Diversity and divergence of the glioma-infiltrating T-cell receptor repertoire. Proc Natl Acad Sci USA 113:E3529–E3537. https://doi.org/10.1073/pnas.1601012113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mackensen A, Ferradini L, Carcelain G, Triebel F, Faure F, Viel S, Hercend T (1993) Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res 53:3569–3573

    CAS  PubMed  Google Scholar 

  34. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M (1998) Clinicopathological study on hepatocellular carcinoma with lymphocytic infiltration. Hepatology 27:407–414. https://doi.org/10.1002/hep.510270214

    Article  CAS  PubMed  Google Scholar 

  35. Anitei MG, Zeitoun G, Mlecnik B, Marliot F, Haicheur N, Todosi AM, Kirilovsky A, Lagorce C, Bindea G, Ferariu D, Danciu M, Bruneval P, Scripcariu V, Chevallier JM, Zinzindohoue F, Berger A, Galon J, Pages F (2014) Prognostic and predictive values of the immunoscore in patients with rectal cancer. Clin Cancer Res 20:1891–1899. https://doi.org/10.1158/1078-0432.CCR-13-2830

    Article  PubMed  Google Scholar 

  36. Shibuya TY, Nugyen N, McLaren CE, Li KT, Wei WZ, Kim S, Yoo GH, Rogowski A, Ensley J, Sakr W (2002) Clinical significance of poor CD3 response in head and neck cancer. Clin Cancer Res 8:745–751

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge the support of USF research computing and the taxpayers of the State of Florida. BC, SZ, and AD are recipients of USF Morsani College of Medicine RISE fellowships.

Author information

Authors and Affiliations

Authors

Contributions

BIC and WLT wrote the code that established the DNA sequencing reads as VJ recombinations. BIC also contributed extensively to analyzing the results of the mining of the exome files for the immune receptor recombination reads and to the manuscript writing. SZ contributed to the RNASeq analyses. AD conducted the Kaplan–Meier analysis. GB supervised the project, contributed to all aspects of analyses, and contributed to finalizing the manuscript.

Corresponding author

Correspondence to George Blanck.

Ethics declarations

Conflict of interest

Authors have nothing to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 769 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chobrutskiy, B.I., Zaman, S., Tong, W.L. et al. Recovery of T-cell receptor V(D)J recombination reads from lower grade glioma exome files correlates with reduced survival and advanced cancer grade. J Neurooncol 140, 697–704 (2018). https://doi.org/10.1007/s11060-018-03001-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-018-03001-1

Keywords

Navigation