Skip to main content

Advertisement

Log in

Molecular pathogenesis of meningiomas

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Meningiomas are common central nervous system tumors that originate from the meningeal coverings of the brain and the spinal cord. Most meningiomas are slowly growing benign tumors that histologically correspond to World Health Organization (WHO) grade I. However, certain rare histological variants (clear cell, chordoid, papillary, and rhabdoid), as well as atypical (WHO grade II) and anaplastic (WHO grade III) meningiomas show a more aggressive biological behavior and are clinically associated with a high risk of local recurrence and a less favorable prognosis. This review summarizes the most important features of meningioma pathology and provides an up-to-date overview about the molecular mechanisms involved in meningioma initiation and progression. Current data indicate that meningioma initiation is closely linked to the inactivation of one or more members of the highly conserved protein 4.1 superfamily, including the neurofibromatosis type 2 gene product merlin/schwannomin, protein 4.IB (DAL-1) and protein 4.1R. The genetic alterations in atypical meningiomas are complex and involve losses on 1p, 6q, 10, 14q and 18q, as well as gains on multiple chromosomes. The relevant genes are still unknown. Anaplastic meningiomas show even more complex genetic alterations, including frequent alteration of the CDKN2A, p14 ARF, and CDKN2Btumor suppressor genes at 9p21, as well as gene amplification on 17q23. A better understanding of the molecular mechanisms involved in meningioma pathogenesis may not only lead to the identification of novel diagnostic and prognostic marker but will also facilitate the development of new pathogenesis-based therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. CBTRUS: Statistical report: Primary brain tumors in the United States, 1995–1999. Published by the Central Brain Tumor Registry of the United States, 2002

  2. Frank E: HLA-DR expression on arachnoid cells. A role in the fibrotic inflammation surrounding nerve roots in spondylotic cervical myelopathy. Spine 19: 2093–2096, 1995

    Google Scholar 

  3. Hasegawa M, Yamashima T, Kida S, Yamashita J: Membranous ultrastructure of human arachnoid cells. J Neuropathol Exp Neurol 56: 1217–27, 1997

    Google Scholar 

  4. Heick A, Mosdal C, Jorgensen K, Klinken L: Localized cranial hyperostosis of meningiomas: a result of neoplastic enzymatic activity? ActaNeurol Scand 87: 243–247, 1993

    Google Scholar 

  5. Krisch B: Ultrastructure of the meninges at the site of penetration of veins through the dura mater, with particular reference to Pacchionian granulations. Investigations in the rat and two species of New-World monkeys (Cebus appeal, Callitrix jacchus). Cell Tissue Res 251: 621–631, 1988

    Google Scholar 

  6. Ohe Y, Ishikawa K, Itoh Z, Kazuhiko T: Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. J Neurochem 67: 964–971, 1996

    Google Scholar 

  7. Reiss K, Mentlein R, Sievers J, Hartmann D: Stromal cellderived factor 1 is secreted by meningeal cells and acts as chemotactic factor on neuronal stem cells of the cerebellar external granular layer. Neuroscience 115: 295–305, 2002

    Google Scholar 

  8. Yamashima T, Sakuda K, Tohma Y, Yamashita J, Oda H, Irikura D, Eguchi N, Beuckmann CT, Kanaoka Y, Urade Y, Hayaishi O: Prostaglandin D synthase (b-trace) in human arachnoid and meningioma cells: roles as a cell marker or in cerebrospinal fluid absorption, tumorigenesis, and calcification process. J Neurosci 17: 2376–2382, 1997

    Google Scholar 

  9. Catala M: Embryonic and fetal development of structures associated with the cerebrospinal fluid in man and other species. Part I: The ventricular system, meninges and choroid plexuses. Arch d'Anat Cytol Pathol 46: 153–169, 1998

    Google Scholar 

  10. Cooling RJ, Wright JE: Arachnoid hyperplasia in optic nerve glioma: confusion with orbital meningioma. Br J Ophthalmol 63: 596–599, 1979

    Google Scholar 

  11. Stafford SL, Perry A, Suman VJ, Meyer FB, Scheithauer BW, Lohse CM, Shaw EG: Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc 73: 936–942, 1998

    Google Scholar 

  12. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM: Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21: 1455–1465, 1997

    Google Scholar 

  13. Jaaskelainen J: Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients. A multivariate analysis. Surg Neurol 26: 461–469, 1986

    Google Scholar 

  14. Louis DN, Scheithauer BW, Budka H, von Deimling A, Kepes JJ: Meningiomas. In: Kleihues P, Cavenee WK (eds) World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Nervous System. IARC Press, Lyon, pp 176–184, 2000

    Google Scholar 

  15. Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC: ‘Malignancy’ in meningiomas: a clinicopathologic study of 116 patients. Cancer 85: 2046–2056, 1999

    Google Scholar 

  16. Nakasu S, Hirano A, Shimura T, Llena JF: Incidental meningiomas in autopsy study. Surg Neurol 27: 319–322, 1987

    Google Scholar 

  17. Stangl AP, Wellenreuther R, Lenartz D, Kraus JA, Menon AG, Schramm J, Wiestler OD, von Deimling A: Clonality of multiple meningiomas. J Neurosurg 86: 853–858, 1997

    Google Scholar 

  18. Borovich B, Doron Y: Recurrence of intracranial meningiomas: the role played by regional multicentricity. J Neurosurg 64: 58–63, 1986

    Google Scholar 

  19. Wu JK, MacGillavry M, Kessaris C, Verheul B, Adelman LS, Darras BT: Clonal analysis of meningiomas. Neurosurgery 38: 1196–1201, 1996

    Google Scholar 

  20. Zhu J, Frosch MP, Busque L, Beggs AH, Dashner K, Gilliland DG, Black PM: Analysis of meningiomas by methylation-and transcription-based clonality assays. Cancer Res 55: 3865–3872, 1995

    Google Scholar 

  21. Lampl Y, Barak Y, Achiron A, Sarova-Pinchas I: Intracranial meningiomas: correlation of peritumoral edema and psychiatric disturbances. Psychiatry Res 58: 177–180, 1995

    Google Scholar 

  22. Ildan F, Tuna M, Gocer AI, Boyar B, Bagdatoglu H, Sen O, Haciyakupoglu S, Burgut HR: Correlation of the relationships of brain–tumor interfaces, magnetic resonance imaging, and angiographic findings to predict cleavage of meningiomas. J Neurosurg 91: 384–390, 1999

    Google Scholar 

  23. Nakano T, Asano K, Miura H, Itoh S, Suzuki S: Meningiomas with brain edema. Radiological characteristics on MRI and review of the literature. J Clin Imaging 26: 243–249, 2002

    Google Scholar 

  24. Tamiya T, Ono Y, Matsumoto K, Ohmoto T: Peritumoral brain edema in intracranial meningiomas: effects of radiological and histological factors. Neurosurgery 49: 1046–1052, 2001

    Google Scholar 

  25. Kalkanis SN, Carroll RS, Zhang J, Zamani AA, Black PM: Correlation of vascular endothelial growth factor messenger RNA expression with peritumoral vasogenic cerebral edema in meningiomas. J Neurosurg 85: 1095–1101, 1996

    Google Scholar 

  26. Yoshioka H, Hama S, Taniguchi E, Sugiyama K, Arita K, Kurisu K: Peritumoral brain edema associated with meningioma. Influence of vascular endothelial growth factor expression and vascular blood supply. Cancer 85: 936–944, 1999

    Google Scholar 

  27. Pieper DR, Al-Mefty O, Hanada Y, Buechner D: Hyperostosis associated with meningioma of the cranial base: secondary changes or tumor invasion. Neurosurgery, 44: 742–747, 1999

    Google Scholar 

  28. Sanson M, Cornu P: Biology of meningiomas. Acta Neurochir (Wien) 142: 493–505, 2000

    Google Scholar 

  29. Perret AG, Duthel R, Fotso MJ, Brunon J, Mosnier JF: Stromelysin-3 is expressed by aggressive meningiomas. Cancer 94: 765–772, 2002

    Google Scholar 

  30. Nordqvist ACS, Smurawa H, Mathiesen T: Expression of matrix metalloproteinases 2 and 9 in meningiomas associated with different degrees of brain invasiveness and edema. J Neurosurg 95: 839–844, 2001

    Google Scholar 

  31. Siddique K, Yanamandra N, Gujrati M, Dinh D, Rao JS, Olivero W: Expression of matrix metalloproteinases, their inhibitors, and urokinase plasminogen activator in human meningiomas. Int J Oncol 22: 289–294, 2003

    Google Scholar 

  32. Kilic T, Bayri Y, Ozduman K, Acar M, Diren S, Kurtkaya O, Ekinci G, Bugra K, Sav A, Ozek MM, Pamir MN: Tenascin in meningioma: expression is correlated with anaplasia, vascular endothelial growth factor expression, and peritumoral edema but not with tumor border shape. Neurosurgery 51: 183–193, 2002

    Google Scholar 

  33. Rempel SA, Ge S, Gutierrez JA: SPARC: a potential diagnostic marker of invasive meningiomas. Clin Cancer Res 5: 237–241, 1999

    Google Scholar 

  34. Artlich A, Schmidt D: Immunohistochemical profile of meningiomas and their histological subtypes. Hum Pathol 21: 843–849, 1990

    Google Scholar 

  35. Meis JM, Ordonez NG, Bruner JM: Meningiomas. An immunohistochemical study of 50 cases. Arch Pathol Lab Med 110: 934–937, 1986

    Google Scholar 

  36. Schnitt SJ, Vogel H: Meningiomas. Diagnostic value of immunoperoxidase staining for epithelial membrane antigen. Am J Surg Pathol 10: 640–649, 1986

    Google Scholar 

  37. Akat K, Mennel HD, Kremer P, Gassier N, Bleck CK, Kartenbeck J: Molecular characterization of desmosomes in meningiomas and arachnoidal tissue. Acta Neuropathol 106: 337–347, 2003

    Google Scholar 

  38. Arishima H, Sato K, Kubota T: Immunohistochemical and ultrastructural study of gap junction proteins connexin26 and 43 in human arachnoid villi and meningeal tumors. J Neuropathol Exp Neurol 61: 1048–1055, 2002

    Google Scholar 

  39. Bhattacharjee M, Adesina AM, Goodman C, Powell S: Claudin-1 expression in meningiomas and schwannomas: possible role in differential diagnosis (Abstract). J Neuropathol Exp Neurol 62: 581, 2003

    Google Scholar 

  40. Schwechheimer K, Zhou L, Birchmeier W: E-cadherin in human brain tumours: loss of immunoreactiviry in malignant meningiomas. Virchows Arch 432: 163–67, 1998

    Google Scholar 

  41. Kawashima M, Suzuki SO, Yamashima T, Fukui M, Iwaki T: Prostaglandin D synthase (b-trace) in meningeal hemangiopericytoma. Mod Pathol 14: 197–201, 2001

    Google Scholar 

  42. Nakasu S, Li DH, Okabe H, Nakajima M, Matsuda M: Significance of MIB-1 staining indices in meningiomas. Am J Surg Pathol 25: 472–478, 2001

    Google Scholar 

  43. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM: The prognostic role of MIB-1, p53, and DNA flow cytometry in completely resected primary meningiomas. Cancer 82: 2262–2269, 1998

    Google Scholar 

  44. Hsu DW, Efird JT, Hedley-Whyte ET: Progesterone and estrogen receptors in meningiomas: prognostic considerations. J Neurosurg 86: 113–120, 1997

    Google Scholar 

  45. Konstantinidou AE, Korkolopoulou P, Mahera H, Mahera H, Kotsiakis X, Hranioti S, Eftychiadis C, Patsouris E: Hormone receptors in non-malignant meningiomas correlate with apoptosis, cell proliferation and recurrencefree survival. Histopathology 43: 280–290, 2003

    Google Scholar 

  46. Perry A, Cai DX, Scheithauer BW, Swanson PE, Lohse CM, Newsham IF, Weaver A, Gutmann DH: Merlin, DAL-1, and progesterone receptor expression in clinicopathologic subsets of meningioma: a correlative immunohistochemical study of 175 cases. J Neuropathol Exp Neurol 59: 872–879, 2000

    Google Scholar 

  47. Verhage A, Go KG, Visser GM, Blankenstein MA, Vaalburg W: The presence of progesterone receptors in arachnoid granulations and in the lining of arachnoid cysts: its relevance to expression of progesterone receptors in meningiomas. Br J Neurosurg 9: 47–50, 1995

    Google Scholar 

  48. Jacobs HM, van Spriel AB, Koehorst SGA: The truncated estrogen receptoralphavariant lackingexon5is notinvolved in progesterone receptor expression in meningiomas. J Steroid Biochem Mol Biol 71: 167–172, 1999

    Google Scholar 

  49. Carroll RS, Schrell UM, Zhang J, Dashner K, Nomikos P, Fahlbusch R, Black PM: Dopamine Dl, dopamine D2, and prolactin receptor messenger ribonucleic acid expression by the polymerase chain reaction in human meningiomas. Neurosurgery 38: 367–375, 1996

    Google Scholar 

  50. Dutour A, Kumar U, Panetta R, Ouafik L, Fina F, Sasi R, Patel YC: Expression of somatostatin receptor subtypes in human brain tumors. Int J Cancer 76: 620–627, 1998

    Google Scholar 

  51. Friend KE, Radinsky R, McCutcheon IE: Growth hormone receptor expression and function in meningiomas: Effect of a specific receptor antagonist. J Neurosurg 91: 93–99, 1999

    Google Scholar 

  52. Muccioli G, Ghe C, Faccani G, Lanotte M, Forni M, Ciccarelli E: Prolactin receptors in human meningiomas: characterization and biological role. J Endocrinol 153: 365–371, 1997

    Google Scholar 

  53. Knudson AG,Jr.: Mutation and cancer: a statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–828, 1971

    Google Scholar 

  54. Evans DGR, Huson SM, Donnai D, Neary W, Blair V, Newton V, Harris R: A clinical study of type 2 neurofibromatosis. Quart J Med 304: 603–618, 1992

    Google Scholar 

  55. Evans DGR, Birch JM, Ramsden RT: Paediatric presentation of type 2 neurofibromatosis. Arch Dis Child 81: 496–99, 1999

    Google Scholar 

  56. Amirjamshidi A, Mehrazin M, Abbassioun K: Meningiomas of the central nervous system occurring below the age of 17: report of 24 cases not associated with neurofibromatosis and review of literature. Childs Nerv Syst 16: 406–16, 2000

    Google Scholar 

  57. Perry A, Giannini C, Raghavan R, Banerjee R, Margraf L, Bowers DC, Lytle RA, Newsham IF, Gutmann DH: Aggressive phenotypic and genotypic features in pediatric and NF2-associated meningiomas: a clinicopathologic study of 53 cases. J Neuropathol Exp Neurol 60: 994–1003, 2001

    Google Scholar 

  58. Ferrante L, Acqui M, Artico M, Mastronardi L, Nucci F: Familial meningiomas. Report of two cases. J Neurosurg 31: 145–151, 1987

    Google Scholar 

  59. Heinrich B, Hartamann C, Stemmer-Rachamimov AO, Louis DN, MacCollin M: Multiple meningiomas: investigating the molecular basis of sporadic and familial forms. Int J Cancer 103: 483–488, 2003

    Google Scholar 

  60. Maxwell M, Shih SD, Galanopoulos T, Hedley-Whyte ET, Cosgrove GR: Familial meningioma: Analysis of expression of neurofibromatosis 2 protein Merlin. Report of two cases. J Neurosurg 88: 562–569, 1998

    Google Scholar 

  61. McDowell JR: Familial meningioma. Neurology 40: 312–314, 1990

    Google Scholar 

  62. Pulst SM, Rouleau GA, Marineau C, Fain P, Sieb JP: Familial meningioma is not allelic to neurofibromatosis 2. Neurology 43: 2096–2098, 1993

    Google Scholar 

  63. Heth JA, Kirby P, Menezes AH: Intraspinal familial clear cell meningioma in a mother and child. Case report. J Neurosurg 93: 317–321, 2000

    Google Scholar 

  64. Kanno H, Yamamoto I, Yoshida M, Kitamura H: Meningioma showing VHL gene inactivation in a patient with von Hippel-Lindau disease. Neurology 60: 1197–1199, 2003

    Google Scholar 

  65. Kirn NR, Choe G, Shin S-H, Wang K-C, Cho BK, Choi KS, Chi JG: Childhood meningiomas associated with meningioangiomatosis: report of five cases and literature review. Neuropathol Appl Neurobiol 28: 48–56, 2002

    Google Scholar 

  66. Perry A, Dehner LP: Meningeal tumors of childhood and infancy. An update and literature review. Brain Pathol 13: 386–408, 2003

    Google Scholar 

  67. Wiebe S, Munoz DG, Smith S, Lee DH: Meningioangiomatosis. A comprehensive analysis of clinical and laboratory features. Brain 122: 709–726, 1999

    Google Scholar 

  68. Sinkre P, Perry A, Cai D, Raghavan R, Watson M, Wilson K, Barton Rogers B: Deletion of the NF2 region in both meningioma and juxtaposed meningioangiomatosis: case report supporting a neoplastic relationship. Ped Develop Pathol 4: 568–572, 2001

    Google Scholar 

  69. Giangaspero F, Guiducci A, Lenz FA, Mastronardi L, Burger PC: Meningioma with meningioangiomatosis: a condition mimicking invasive meningiomas in children and young adults. Report of two cases and review of the literature. Am J Surg Pathol 23: 872–875, 1999

    Google Scholar 

  70. Sadetzki S, Flint-Richter P, Ben-Tal T, Nass D: Radiation-induced meningioma: a descriptive study of 253 cases. J Neurosurg 97: 1078–1082, 2002

    Google Scholar 

  71. Salvati M, Cervoni L, Puzzilli F, Bristot R, Delfini R, Gagliardi FM: High-dose radiation-induced meningiomas. Surg Neurol 47: 435–442, 1997

    Google Scholar 

  72. Strojan P, Popovic M, Jereb B: Secondary intracranial meningiomas after high-dose cranial irradiation: report of five cases and review of the literature. Int J Radiat Oncol Biol Phys 48: 65–73, 2000

    Google Scholar 

  73. Ron E, Modan B, Boice JD Jr, Alfandary E, Stovall M, Chetrit A, Katz L: Tumors of the brain and nervous system after radiotherapy in childhood. New Engl J Med 319: 1033–1039, 1988

    Google Scholar 

  74. Rubinstein AB, Shalit MN, Cohen ML, Zandbank U, Reichenthal E: Radiation-induced cerebral meningioma: a recognizable entity. J Neurosurg 61: 966–971, 1984

    Google Scholar 

  75. Joachim T, Ram Z, Rappaport ZH, Simon M, Schramm J, Wiestler OD, von Deimling A: Comparative analysis of the NF2, TP53, PTEN, KRAS, NRAS and HRAS genes in sporadic and radiation-induced human meningiomas. Int J Cancer 94: 218–221, 2001

    Google Scholar 

  76. Shoshan Y, Chernova O, Juen SS, Somerville RP, Israel Z, Barnett GH, Cowell JK: Radiation-induced meningioma: a distinct molecular genetic pattern? J Neuropathol Exp Neurol 59: 614–620, 2000

    Google Scholar 

  77. Zattara-Cannoni H, Roll P, Figarella-Branger D, Lena G, Dufour H, Grisoli F, Vagner-Capodano AM: Cytogenetic study of six cases of radiation-induced meningiomas. Cancer Genet Cytogenet 126: 81–84, 2001

    Google Scholar 

  78. Zang KD: Meningioma: A cytogenetic model of a complex benign human tumor, including data on 394 karyotyped cases. Cytogenet Cell Genet 93: 207–220, 2001

    Google Scholar 

  79. Evans JJ, Jeun SS, Lee JH, Harwalkar JA, Shoshan Y, Cowell JK, Golubic M: Molecular alterations in the neurofibromatosis type 2 gene and its protein rarely occurring in meningothelial meningiomas. J Neurosurg 94: 111–117, 2001

    Google Scholar 

  80. Kros J, de Greve K, van Tilborg A, Hop W, Pieterman H, Avezaat C, Lekanne Dit Deprez R, Zwarthoff E: NF2 status of meningiomas is associated with tumour localization and histology. J Pathol 194: 367–372, 2001

    Google Scholar 

  81. Wellenreuther R, Waha A, Vogel Y, Lenartz D, Schramm J, Wiestler OD, von Deimling A: Quantitative analysis of neurofibromatosis type 2 gene transcripts in meningiomas supports the concept of distinct molecular variants. Lab Invest 77: 601–606, 1997

    Google Scholar 

  82. Peyrard M, Fransson I, Xie YG, Han FY, Ruttledge MH, Swahn S, Collins JE, Dunham I, Collins VP, Dumanski JP: Characterization of a new member of the human betaadaptin gene family from chromosome 22q12, a candidate meningioma gene. Hum Mol Genet 3: 1393–1399, 1994

    Google Scholar 

  83. Lekanne Deprez RH, Riegman PH, Groen NA, Warringa UL, van Biezen NA, Molijn AC, Bootsma D, de Jong PJ, Menon AG, Kley NA, et al: Cloning and characterization of MN1, a gene from chromosome 22ql l, which is disrupted by a balanced translocation in a meningioma. Oncogene 10: 1521–1528, 1995

    Google Scholar 

  84. Schmitz U, Mueller W, Weber M, Sevenet N, Delattre O, von Deimling A: INI1 mutations in meningiomas at a potential hotspot in exon 9. Br J Cancer 84: 199–201, 2001

    Google Scholar 

  85. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, Delattre O, Thomas G, Nordenskjold M, Collins VP: Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nature Genet 6: 180–184, 1997

    Google Scholar 

  86. Harada T, Irving RM, Xuereb JH, Barton DE, Hardy DG, Moffat DA, Maher ER: Molecular genetic investigation of the NF2 tumor suppressor gene in sporadic meningioma. J Neurosurg 84: 847–851, 1996

    Google Scholar 

  87. Merel P, Hoang-Xuan K, Sanson M, Moreau-Aubry A, Bijisma EK, Lazaro C, Moisan JP, Resche F, Nishisho I, Estivill X, Delattre JY, Poisson M, Theillet C, Hulsebos T, Delattre O, Thomas G: Predominant occurrence of somatic mutations of the NF2 gene in meningiomas and schwannomas. Genes Chrom Cancer 13: 211–216, 1995

    Google Scholar 

  88. Leone PE, Bello MJ, de Campos JM, Vaquero J, Sarasa JL, Pestana A, Rey JA: NF2 gene mutations and allelic status of 1p, 14q and 22q in sporadic meningiomas. Oncogene 18: 2231–2239, 1999

    Google Scholar 

  89. Trofatter JA, MacCollin MM, Rutter JL, Murrell JR, Duyao MP, Parry DM, Eldridge R, Klay N, Menon AG, Pulaski K, Haase VH, Ambrose CM, Munroe D, Bove C, Haines JL, Martuza RL, MacDonald ME, Seizinger BR, Short MP, Buckler AJ, Gusella JF: A novel moesin-ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72: 1–20, 1993

    Google Scholar 

  90. Rouleau GA, Merel P, Lutchman M, Sanson M, Zucman J, Marineau C, Hoang-Xuan K, Demczuk M, Desmaze C, Plougastel B, Pulst SM, Lenoir G, Bijisma E, Fashold R, Dumanski J, de Jong P, Parry D, Eldrige R, Aurias A, Delattre O, Thomas G: Alteration in a new gene encoding a putative membrane-organizing protein causes neurofibromatosis type 2. Nature 363: 515–521, 1993

    Google Scholar 

  91. Claudio JO, Lutchman M, Rouleau GA: Widespread but cell type-specific expression of the mouse neurofibromatosis type 2 gene. Neuroreport 6: 1942–1946, 1995

    Google Scholar 

  92. den Bakker MA, Vissers KJ, Molijn AC, Kros JM, Zwarthoff EC, van der Kwast TH: Expression of the neurofibromatosis type 2 gene in human tissues. J Histochem Cytochem 47: 1471–1480, 1999

    Google Scholar 

  93. Scherer SS, Gutmann DH: Expression of the neurofibromatosis 2 tumor suppressor gene product, merlin, in Schwann cells. J Neurosci Res 46: 595–605, 1996

    Google Scholar 

  94. Stemmer-Rachamimov AO, Gonzalez-Agosti C, Xu L, Burwick JA, Beauchamp R, Pinney D, Louis DN, Ramesh V: Expression of NF2-encoded merlin and related ERM family proteins in the human central nervous system. J Neuropathol Exp Neurol 56: 735–742, 1997

    Google Scholar 

  95. Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I, O'Bryan JP, Gupta V, Ratner N, Der CJ, Jacks T, McClatchey AI: The NF2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 1: 63–72, 2001

    Google Scholar 

  96. Lallemand D, Curto M, Saotome I, Giovannini M, McClatchey AI: NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17: 1090–1100, 2003

    Google Scholar 

  97. McClatchey AI, Saotome I, Mercer K, Crowley D, Gusella JF, Bronson RT, Jacks T: Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 12: 1121–1133, 1998

    Google Scholar 

  98. Giovannini M, Robanus-Maandag E, van der Valk M, Niwa-Kawakita M, Abramowski V, Goutebroze L, Woodruff JM, Berns A, Thomas G: Conditional biallelic Nf2 mutation in the mouse promotes manifestations of human neurofibromatosis type 2. Genes Dev 14: 1617–1630, 2000

    Google Scholar 

  99. Kalamarides M, Niwa-Kawakita M, Leblois H, Abramowski V, Perricaudet M, Janin A, Thomas G, Gutmann DH, Giovannini M: Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev 16: 1060–1065, 2002

    Google Scholar 

  100. Sherman L, Xu HM, Geist RT, Saporito-Irwin S, Howells N, Ponta H, Herrlich P, & Gutmann DH: Interdomain binding mediates tumor growth suppression by the NF2 gene product. Oncogene 15: 2505–2509, 1997

    Google Scholar 

  101. Gutmann DH, Hirbe AC, Haipek CA: Functional analysis of neurofibromatosis 2 (NF2) missense mutations. Hum Mol Genet 10: 1519–1529, 2001

    Google Scholar 

  102. Gutmann DH, Sherman L, Seftor L, Haipek C, Lu K-H, Hendrix M: Increased expression of the Nf2 suppressor gene product, merlin, impairs cell motility, adhesion and spreading. Hum Mol Genet 8: 267–276, 1999

    Google Scholar 

  103. Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA, Gutmann DH, Ponta H, Herrlich P: The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 15: 968–980, 2001

    Google Scholar 

  104. Ikeda K, Saeki Y, Gonzalez-Agosti C, Ramesh V, Chiocca EA: Inhibition of NF2-negative and NF2-positive primary human meningioma cell proliferation by overexpression of merlin due to vector-mediated gene transfer. J Neurosurg 91: 85–92, 1999

    Google Scholar 

  105. Reczek D, Berryman M, Bretscher A: Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin–radixin–moesin family. J Cell Biol 139: 169–179, 1997

    Google Scholar 

  106. Murthy A, Gonzalez-Agosti C, Cordero E, Pinney D, Candia C, Solomon F, Gusella J, Ramesh V: NHE-RF, a regulatory cofactor for Na+H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem 273: 1273–1276, 1998

    Google Scholar 

  107. Scoles DR, Huynh DP, Morcos PA, Coulsell ER, Robinson NGG, Tamanoi F, Pulst SM: Neurofibromatosis 2 tumour suppressor schwannomin interacts with beta IIspectrin. Nat Genet 18: 354–359, 1998

    Google Scholar 

  108. Scoles DR, Huynh DP, Chen MS, Burke SP, Gutmann DH, Pulst SM: The neurofibromatosis 2 (NF2) tumor suppressor protein interacts with hepatocyte growth factor-regulated tyrosine kinase substrate, HRS. Hum Mol Genet 9: 1567–1574, 2000

    Google Scholar 

  109. Goutebroze L, Brault E, Muchardt C, Camonis J, Thomas G: Cloning and characterization of SCHIP-1, a novel protein interacting specifically with spliced isoforms and naturally occurring mutant NF2 proteins. Mol Cell Biol 20: 1699–1712, 2000

    Google Scholar 

  110. Fernandez-Valle C, Tang Y, Ricard J, Rodenas-Ruano A, Taylor A, Hackler E, Biggerstaff J, lacovelli J: Paxillin binds schwannomin and regulates its density-dependent localization and effect on cell morphology. Nat Genet 31: 354–362, 2002

    Google Scholar 

  111. Obremski VJ, Hall AM, Fernandez-Valle C: Merlin, the neurofibromatosis type 2 gene product, and betal integrin associate in isolated and differentiating Schwann cells. J Neurobiol 37: 487–501, 1998

    Google Scholar 

  112. Gronholm M, Sainio M, Zhao F, Heiska L, Vaheri A, Carpen O: Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. J Cell Sci 112: 895–904, 1999

    Google Scholar 

  113. Tsukita S, Oishi K, Sato N, Sagara J, Kawai A, Tsukita S: ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol 126: 391–401, 1994

    Google Scholar 

  114. Sun CX, Haipek C, Scoles DR, Pulst SM, Giovannini M, Komada M, Gutmann DH: Functional analysis of the relationship between the neurofibromatosis 2 (NF2) tumor suppressor and its binding partner, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS/HGS). Hum Mol Genet 11: 3167–3178, 2002

    Google Scholar 

  115. Kissil JL, Johnson KC, Eckman MS, Jacks T: Merlin phosphorylation by p21-activated kinase 2 and effects of phosphorylation on merlin localization. J Biol Chem 277: 10394–10399, 2002

    Google Scholar 

  116. Surace El, Haipek CA, Gutmann DH: The effect of merlin phosphorylation on neurofibromatosis 2 (NF2) gene function. Oncogene 23: 580–587, 2004

    Google Scholar 

  117. Huang S, Lichtenauer UD, Pack S, Wang C, Kim AC, Lutchman M, Koch CA, Torres-Cruz J, Huang SC, Benz EJ Jr., Christiansen H, Dockhorn-Dworniczak B, Poremba C, Vortmeyer AO, Chishti AH, Zhuang Z: Reassignment of the EPB4.1 gene to 1p36 and assessment of its involvement in neuroblastomas. Eur J Clin Invest 31: 907–914, 2001

    Google Scholar 

  118. Robb VA, Li W, Gascard P, Perry A, N Mohandas, Gutmann DH: Identification of a third Protein 4.1 tumor suppressor, Protein 4.1R, in meningioma pathogenesis. Neurobiol Dis 13: 191–202, 2003

    Google Scholar 

  119. Tran YK, Bogler O, Gorse KM, Wieland I, Green MR, Newsham IF: A novel member of the NF2/ERM/4.1 Superfamily with growth suppressor properties in lung cancer. Cancer Res 59: 35–43, 1999

    Google Scholar 

  120. Gutmann DH, Donahoe J, Perry A, Lemke N, Gorse K, Kittiniyom K, Rempel SA, Gutierrez JA, Newsham IF: Loss of DAL-1, a protein 4.1-related tumor suppressor, is an important early event in the pathogenesis of meningiomas. Hum Mol Genet 9: 1495–1500, 2000

    Google Scholar 

  121. Gutmann DH, Hirbe AC, Huang ZY, Haipek CA: The Protein 4.1 tumor suppressor, DAL-1, impairs cell motility, but regulates proliferation in a cell type-specific fashion. Neurobiol Dis 8: 266–278, 2001

    Google Scholar 

  122. Charboneau AL, Singh V, Yu T, Newsham IF: Suppression of growth and increased cellular attachment after expression of DAL-1 in MCF-7 breast cancer cells. Int J Cancer 100: 181–188, 2002

    Google Scholar 

  123. Kino T, Takeshima H, Nakao M, Nishi T, Yamamoto K, Kimura T, Saito Y, Kochi M, Kuratsu J, Saya H, Ushio Y: Identification of the cis-acting region in the NF2 gene promoter as a potential target for mutation and methylation-dependent silencing in schwannoma. Genes Cells 6: 441–454, 2001

    Google Scholar 

  124. Yu T, Robb VA, Singh V, Gutmann DH, Newsham IF: The 4.1/ezrin/radixin/moesin domain of the DAL-1/Protein 4.1B tumour suppressor interacts with 14-3-3 proteins. Biochem J 365: 783–789, 2002

    Google Scholar 

  125. Muslin AJ, Xing H: 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal 12: 703–709, 2000

    Google Scholar 

  126. Yageta M, Kuramochi M, Masuda M, Fukami T, Fukuhara H, Maruyama T, Shibuya M, Murakami Y: Direct association of TSLC1 and DAL-1, two distinct tumor suppressor proteins in lung cancer. Cancer Res 15: 5129–5133, 2002

    Google Scholar 

  127. Murakami Y: Functional cloning of a tumor suppressor gene, TSLC1, in human non-small cell lung cancer. Oncogene 21: 6936–6948, 2002

    Google Scholar 

  128. Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, Sekiya T, Reeves RH, Murakami Y: TSLC1 is a tumor-suppressor gene in human nonsmall-cell lung cancer. Nat Genet 27: 427–430, 2001

    Google Scholar 

  129. Masuda M, Yageta M, Fukuhara H, Kuramochi M, Maruyama T, Nomoto A, Murakami Y: The tumor suppressor protein TSLC1 is involved in cell-cell adhesion. J Biol Chem 277: 31014–31049, 2002

    Google Scholar 

  130. Buschges R, Ichimura K, Weber RG, Reifenberger G, Collins VP: Allelic gain and amplification on the long arm of chromosome 17 in anaplastic meningiomas. Brain Pathol 12: 145–153, 2002

    Google Scholar 

  131. Cai DX, Banerjee R, Scheithauer BW, Lohse CM, Kleinschmidt-Demasters BK, Perry A: Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications. J Neuropathol Exp Neurol 60: 628–636, 2001

    Google Scholar 

  132. Cai DX, James CD, Scheithauer BW, Couch FJ, Perry A: PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115: 213–218, 2001

    Google Scholar 

  133. Lamszus K, Kluwe L, Matschke J, Meissner H, Laas R, Westphal M: Allelic losses at 1p, 9q, l0q, 14q, and 22q in the progression of aggressive meningiomas and undifferentiated meningeal sarcomas. Cancer Genet Cytogenet 110: 103–110, 1999

    Google Scholar 

  134. Ozaki S, Nishizaki T, Ito H, Sasaki K: Comparative genomic hybridization analysis of genetic alterations associated with malignant progression of meningioma. J Neuro-Oncol 41: 167–174, 1999

    Google Scholar 

  135. Weber RG, Bostrom J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P: Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci USA 94: 14719–14724, 1997

    Google Scholar 

  136. Bostrom J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, Ichimura K, Collins VP, Reifenberger G: Alterations of the tumor suppressor genes CDKN2A ( pl6INK4a), p14ARF, CDKN2B ( p15INK4b), and CDKN2C ( p18INK4c) in atypical and anaplastic meningiomas. Am J Pathol 159: 661–669, 2001

    Google Scholar 

  137. Perry A, Banerjee R, Lohse CM, Kleinschmidt-DeMasters BK, Scheithauer BW: A role for chromosome 9p21 deletions in the malignant progression of meningiomas and the prognosis of anaplastic meningiomas. Brain Pathol 12: 183–190, 2002

    Google Scholar 

  138. Peters N, Wellenreuther R, Rollbrocker B, Hayashi Y, Meyer-Puttlitz B, Duerr EM, Lenartz D, Marsh DJ, Schramm J, Wiestler OD, Parsons R, Eng C, von Deimling A: Analysis of the PTEN gene in human meningiomas. Neuropathol Appl Neurobiol 24: 3–8, 1998

    Google Scholar 

  139. Watson MA, Gutmann DH, Peterson K, Chicoine MR, Kleinschmidt-DeMasters BK, Brown HG, Perry A: Molecular characterization of human meningiomas by gene expression profiling using high-density oligonucleotide microarrays. Am J Pathol 161: 665–672, 2002

    Google Scholar 

  140. Chen HJ, Liang CL, Lu K, Lin JW, Cho CL: Implication of telomerase activity and alternations of telomere length in the histologic characteristics of intracranial meningiomas. Cancer 89, 2092–2098, 2000

    Google Scholar 

  141. Simon M, Park TW, Leuenroth S, Hans VH, Loning T, Schramm J: Telomerase activity and expression of the telomerase catalytic subunit, hTERT, in meningioma progression. J Neurosurg 92: 832–840, 2000

    Google Scholar 

  142. Lamszus K, Lengler U, Schmidt NO, Stavrou D, Ergun S, Westphal M: Vascular endothelial growth factor, hepatocyte growth factor/scatter factor, basic fibroblast growth factor, and placenta growth factor in human meningiomas and their relation to angiogenesis and malignancy. Neurosurgery 46: 938–948, 2000

    Google Scholar 

  143. Shono T, Inamura T, Torisu M, Suzuki SO, Fukui M: Vascular endothelial growth factor and malignant transformation of a meningioma: case report. Neurol Res 22: 189–193, 2000

    Google Scholar 

  144. Weisberg S, Ashkenazi E, Israel Z, Attia M, Shoshan Y, Umansky F, Brodie C: Anaplastic and atypical meningiomas express high levels of Fas and undergo apoptosis in response to Fas ligation. Am J Pathol 159: 1193–1197, 2001

    Google Scholar 

  145. Erdincler P, Lena G, Sarioglu AC, Kuday C, Choux M: Intracranial meningiomas in children: review of 29 cases. Surg Neurol 49: 136–141, 1998

    Google Scholar 

  146. Biegel JA, Parmiter AH, Sutton LN, Rorke LB, Emanuel BS: Abnormalities of chromosome 22 in pediatric meningiomas. Genes Chrom Cancer 9: 81–87, 1994

    Google Scholar 

  147. Slave I, MacCollin MM, Dunn M, Jones S, Sutton L, Gusella JF, Biegel JA: Exon scanning for mutations of the NF2 gene in pediatric ependymomas, rhabdoid tumors and meningiomas. Int J Cancer 64: 243–247, 1995

    Google Scholar 

  148. Johnson MD, Woodard A, Kim P, Frexes-Steed M: Evidence for mitogen-associated protein kinase activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells. J Neurosurg 94: 293–300, 2001

    Google Scholar 

  149. Yang S-Y, Xu G-M: Expression of PDGF and its receptor as well as their relationship to proliferating activity and apoptosis of meningiomas in human meningiomas. J Clin Neurosci 8(Suppl 1): 49–53, 2000

    Google Scholar 

  150. Torp SH, Helseth E, Dalen A, Unsgaard G: Expression of epidermal growth factor receptor in human meningiomas and meningeal tissue. APMIS 100: 797–802, 1992

    Google Scholar 

  151. Carroll RS, Black PM, Zhang J, Kirsch M, Percec I, Lau N, Guha A: Expression and activation of epidermal growth factor receptors in meningiomas. J Neurosurg 87: 315–323, 1997

    Google Scholar 

  152. Halper J, Jung C, Perry A, Suliman H, Hill MP, Scheithauer B: Expression of TGF a in meningiomas. J Neuro-Oncol 45: 127–134, 1999

    Google Scholar 

  153. Nordqvist AC, Peyrard M, Pettersson H, Mathiesen T, Collins VP, Dumanski JP, Schalling M: A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas. Cancer Res 57: 2611–2614, 1997

    Google Scholar 

  154. Yamasaki F, Yoshioka H, Hama S, Sugiyama K, Arita K, Kurisu K: Recurrence of meningiomas. Influence of vascular endothelial growth factor expression. Cancer 89: 1102–1110, 2000

    Google Scholar 

  155. Harland SP, Kuc RE, Pickard JD, Davenport AP: Expression of endothelin (A) receptors in human gliomas and meningiomas, with high affinity for the selective antagonist PD156707. Neurosurgery 43: 890–898, 1998

    Google Scholar 

  156. Pagotto U, Arzberger T, Hopfner U, Sauer J, Renner U, Newton CJ, Lange M, Uhl E, Weindl A, Stalla GK: Expression and localization of endothelin-1 and endothelin receptors in human meningiomas: evidence for a role in tumoral growth. J Clin Invest 96: 2017–2025, 1995

    Google Scholar 

  157. Murphy M, Chen JN, George DL: Establishment and characterization of a human leptomeningeal cell line. J Neurosci Res 30: 475–483, 1991

    Google Scholar 

  158. Lee WH: Characterization of a newly established malignant meningioma cell line of the human brain: IOMMLee. Neurosurgery 27: 389–395, 1990

    Google Scholar 

  159. Tanaka K, Sato C, Maeda Y, Koike M, Matsutani M, Yamada K, Miyaki M: Establishment of a human malignant meningioma cell line with amplified c-myc oncogene. Cancer 64: 2243–2249, 1989

    Google Scholar 

  160. Tsujino K, Yamate J, Tsukamoto Y, Kumagai D, Kannan Y, Jippo T, Kuwamura M, Kotani T, Takeya M, Sakuma S: Establishment and characterization of cell lines derived from a transplantable rat malignant meningioma: morphological heterogeneity and production of nerve growth factor. Acta Neuropathol 93: 461–470, 1997

    Google Scholar 

  161. McCutcheon IE, Friend KE, Gerdes TM, Zhang BM, Wildrick DM, Fuller GN: Intracranial injection of human meningioma cells in athymic mice: an orthotopic model for meningioma growth. J Neurosurg 92: 306–314, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perry, A., Gutmann, D.H. & Reifenberger, G. Molecular pathogenesis of meningiomas. J Neurooncol 70, 183–202 (2004). https://doi.org/10.1007/s11060-004-2749-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-004-2749-0

Navigation