Skip to main content

Advertisement

Log in

Circulating exosomal MicroRNAs: New non-invasive biomarkers of non-communicable disease

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Exosomes are vesicles, ranging of 30–150 nm in diameter, which are released by different cell types into the extracellular space. Exosomes are capable of transporting several biomolecules such as proteins, lipids, DNA, mRNA, and non-coding RNA, including microRNAs (miRs). miRs signatures have been linked to the development of non-communicable diseases and their classification into various subtypes and/or stages. Interestingly, the miRs contained in exosomes (exomiRs) are suitable candidates as non-invasive biomarkers due to their stability in body fluids and harsh conditions, as well as they are considered critical players involved in intercellular communication; so that they can be a promising diagnostic tool for several diseases. Besides, exomiRs allow discrimination between different stages of the disease and could be a valuable strategy for the early detection of several pathologies in a non-invasive approach. This review aims to describe exomiRs present in biologic fluids that can be used as a tool for the diagnosis and prognosis of non-communicable diseases such as cancer, cardiovascular, kidney, and neurodegenerative disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brennan K et al (2020) A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. Sci Rep. https://doi.org/10.1038/s41598-020-57497-7

  2. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells:41–68. https://doi.org/10.3390/cells8070727

  3. Console L, Scalise M, Indiveri C (2019) Exosomes in inflammation and role as biomarkers. Clin Chim Acta 488(2018):165–171. https://doi.org/10.1016/j.cca.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  4. Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. https://doi.org/10.1038/ncb1929

  5. Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R (2016) Y-box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. Elife. https://doi.org/10.7554/eLife.19276

  6. Minciacchi VR et al (2016) The emerging role of large Oncosomes. Semin Cell Dev Biol:41–51. https://doi.org/10.1016/j.semcdb.2015.02.010.Extracellular

  7. Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465. https://doi.org/10.1002/jcp.27486

    Article  CAS  PubMed  Google Scholar 

  8. Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodríguez-Dorantes M (2014) MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther 7:1327–1338. https://doi.org/10.2147/OTT.S61562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhome R et al (2018) Exosomal microRNAs (exomiRs): small molecules with a big role in cancer. Cancer Lett 420:228–235. https://doi.org/10.1016/j.canlet.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bertoli G, Cava C, Castiglioni I (2015) Micrornas: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. https://doi.org/10.7150/thno.11543

  11. WHO (2018) Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. pp 13–15

  12. Hannafon BN, Ding WQ (2013) Intercellular communication by exosome-derived microRNAs in cancer. Int J Mol Sci 14(7):14240–14269. https://doi.org/10.3390/ijms140714240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roma-Rodrigues C, Fernandes AR, Baptista PV (2014) Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int 2014. https://doi.org/10.1155/2014/179486

  14. Min L et al (2019) Loss of circulating exosomal miR-92b is a novel biomarker of colorectal cancer at early stage. Int J Med Sci 16(9):1231–1237. https://doi.org/10.7150/ijms.34540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Takano Y et al (2017) Circulating exosomal microRNA-203 is associated with metastasis possibly via inducing tumor-associated macrophages in colorectal cancer. Oncotarget 8(45):78598–78613. https://doi.org/10.18632/oncotarget.20009

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu X et al (2018) Circulating exosomal miR-27a and miR-130a act as novel diagnostic and prognostic biomarkers of colorectal cancer. Cancer Epidemiol Biomark Prev 27(7):746–754. https://doi.org/10.1158/1055-9965.EPI-18-0067

    Article  CAS  Google Scholar 

  17. Eichelser C et al (2014) Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 5(20):9650–9663. https://doi.org/10.18632/oncotarget.2520

    Article  PubMed  PubMed Central  Google Scholar 

  18. Goto T et al (2018) An elevated expression of serum exosomal microRNA-191, − 21, −451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer 18(1):1–11. https://doi.org/10.1186/s12885-018-4006-5

    Article  CAS  Google Scholar 

  19. Yokoi A et al (2018) Integrated extracellular microRNA profiling for ovarian cancer screening. Nat Commun 9(1):2–6. https://doi.org/10.1038/s41467-018-06434-4

    Article  CAS  Google Scholar 

  20. Samsonov R et al (2016) Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: application for prostate cancer diagnostic. Prostate 76(1):68–79. https://doi.org/10.1002/pros.23101

    Article  CAS  PubMed  Google Scholar 

  21. WHO (2014) Global status report on noncommunicable diseases 2014. Geneva

  22. Anand S (2013) A brief primer on microRNAs and their roles in angiogenesis. Vasc Cell 5(1):2. https://doi.org/10.1186/2045-824X-5-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feinberg MW, Moore KJ (2016) MicroRNA regulation of atherosclerosis. Circ Res 118(4):703–720. https://doi.org/10.1161/CIRCRESAHA.115.306300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar S, Williams D, Sur S, Wang J-Y, Jo H (2019) Role of flow-sensitive microRNAs and long noncoding RNAs in vascular dysfunction and atherosclerosis. Vasc Pharmacol 114:76–92. https://doi.org/10.1016/j.vph.2018.10.001

    Article  CAS  Google Scholar 

  25. Santovito D et al (2013) Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets 17(3):217–223. https://doi.org/10.1517/14728222.2013.745512

    Article  CAS  PubMed  Google Scholar 

  26. Wu Q, Yuan X, Li B, Han R, Zhang H, Xiu R (2020) Integrated exosomal miRNA and transcriptome analysis of brain microvascular endothelial cells in spontaneously hypertensive rats. Hypertens Res 43(2):90–98. https://doi.org/10.1038/s41440-019-0345-0

    Article  CAS  PubMed  Google Scholar 

  27. Jayaseelan VP, Arumugam P (2020) Exosomal microRNAs as a promising theragnostic tool for essential hypertension. Hypertens Res 43(1):74–75. https://doi.org/10.1038/s41440-019-0343-2

    Article  PubMed  Google Scholar 

  28. Wong L, Wang J, Liew O, Richards A, Chen Y-T (2016) MicroRNA and heart failure. Int J Mol Sci 17(4):502. https://doi.org/10.3390/ijms17040502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiao L et al (2019) microRNA-21-5p dysregulation in exosomes derived from heart failure patients impairs regenerative potential. J Clin Invest 129(6):2237–2250. https://doi.org/10.1172/JCI123135

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wu T et al (2018) Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J Thorac Dis 10(11):6211–6220. https://doi.org/10.21037/jtd.2018.10.52

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jairajpuri DS, Malalla ZH, Mahmood N, Almawi WY (2017) Circulating microRNA expression as predictor of preeclampsia and its severity. Gene 627:543–548. https://doi.org/10.1016/j.gene.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  32. Wang Y et al (2019) Serum Exosomal microRNA let-7i-3p as candidate diagnostic biomarker for Kawasaki disease patients with coronary artery aneurysm. IUBMB Life:iub.2015. https://doi.org/10.1002/iub.2015

  33. Lan H, Chung A, Yu X (2013) MicroRNA and nephropathy: emerging concepts. Int J Nephrol Renovasc Dis:169. https://doi.org/10.2147/IJNRD.S37885

  34. Sonoda H et al (2019) miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep 9(1):4692. https://doi.org/10.1038/s41598-019-40747-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Du J et al (2013) MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery. PLoS One 8(5):e63390. https://doi.org/10.1371/journal.pone.0063390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou P, Chen Z, Zou Y, Wan X (2016) Roles of non-coding RNAs in acute kidney injury. Kidney Blood Press Res 41(6):757–769. https://doi.org/10.1159/000450566

    Article  CAS  PubMed  Google Scholar 

  37. Umanath K, Lewis JB (2018) Update on diabetic nephropathy: Core curriculum 2018. Am J Kidney Dis 71(6):884–895. https://doi.org/10.1053/j.ajkd.2017.10.026

    Article  PubMed  Google Scholar 

  38. Eissa S, Matboli M, Bekhet MM (2016) Clinical verification of a novel urinary microRNA panal: 133b, −342 and −30 as biomarkers for diabetic nephropathy identified by bioinformatics analysis. Biomed Pharmacother 83:92–99. https://doi.org/10.1016/j.biopha.2016.06.018

    Article  CAS  PubMed  Google Scholar 

  39. Beltrami C et al (2018) Association of Elevated Urinary miR-126, miR-155, and miR-29b with diabetic kidney disease. Am J Pathol 188(9):1982–1992. https://doi.org/10.1016/j.ajpath.2018.06.006

    Article  CAS  PubMed  Google Scholar 

  40. Zang J, Maxwell AP, Simpson DA, McKay GJ (2019) Differential expression of urinary Exosomal MicroRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease. Sci Rep 9(1):1–10. https://doi.org/10.1038/s41598-019-47504-x

    Article  CAS  Google Scholar 

  41. Delić D et al (2016) Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PLoS One 11(3):1–16. https://doi.org/10.1371/journal.pone.0150154

    Article  CAS  Google Scholar 

  42. Chen T et al (2019) Increased urinary exosomal microRNAs in children with idiopathic nephrotic syndrome. EBioMedicine 39:552–561. https://doi.org/10.1016/j.ebiom.2018.11.018

    Article  PubMed  Google Scholar 

  43. Cao DD, Li L, Chan WY (2016) MicroRNAs: key regulators in the central nervous system and their implication in neurological diseases. Int J Mol Sci. https://doi.org/10.3390/ijms17060842

  44. Fabbri M (2018) MicroRNAs and mirceptors: a new mechanism of action for intercellular communication. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.2016.0486

  45. De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol. https://doi.org/10.3389/fimmu.2015.00203

  46. Lehmann SM et al (2012) An unconventional role for miRNA: Let-7 activates toll-like receptor 7 and causes neurodegeneration. Nat Neurosci. https://doi.org/10.1038/nn.3113

  47. Lugli G et al (2015) Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One. https://doi.org/10.1371/journal.pone.0139233

  48. Gui Y, Liu H, Zhang L, Lv W, Hu X (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget

  49. Margis R, Margis R, Rieder CRM (2011) Identification of blood microRNAs associated to Parkinsonós disease. J Biotechnol. https://doi.org/10.1016/j.jbiotec.2011.01.023

  50. Cao XY et al (2017) MicroRNA biomarkers of Parkinson’s disease in serum exosome-like microvesicles. Neurosci Lett. https://doi.org/10.1016/j.neulet.2017.02.045

  51. Ebrahimkhani S et al (2017) Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep. https://doi.org/10.1038/s41598-017-14301-3

  52. Xu YF, Hannafon BN, Zhao YD, Postier RG, Ding WQ (2017) Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 8(44):77028–77040. https://doi.org/10.18632/oncotarget.20332

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huang X (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate Cancer. Eur Urol 67(1):33–41. https://doi.org/10.1161/CIRCULATIONAHA.110.956839

    Article  CAS  PubMed  Google Scholar 

  54. Meng X, Müller V, Milde-langosch K, Trillsch F, Schwarzenbach H (2016) Diagnostic and prognostic relevance of circulating exosomal miR-373 , miR-200a , miR-200b and miR-200c in patients with epithelial ovarian cancer. 7(13)

  55. Zhang Y, Zhang Y, Yin Y, Li S (2019) Detection of circulating exosomal miR-17-5p serves as a novel non-invasive diagnostic marker for non-small cell lung cancer patients. Pathol Res Pract 215(8):152466. https://doi.org/10.1016/j.prp.2019.152466

    Article  CAS  PubMed  Google Scholar 

  56. Nakano T et al (2019) Circulating exosomal miR-92b: its role for cancer immunoediting and clinical value for prediction of posttransplant hepatocellular carcinoma recurrence. Am J Transplant:1–13. https://doi.org/10.1111/ajt.15490

  57. Gonzalez-Villasana V et al (2019) Presence of circulating miR-145, miR-155, and miR-382 in exosomes isolated from serum of breast Cancer patients and healthy donors. Dis Markers 2019. https://doi.org/10.1155/2019/6852917

  58. Fu F, Jiang W, Zhou L, Chen Z (2018) Circulating Exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal Cancer. Transl Oncol 11(2):221–232. https://doi.org/10.1016/j.tranon.2017.12.012

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meltzer S et al (2019) Circulating Exosomal miR-141-3p and miR-375 in metastatic progression of rectal Cancer. Transl Oncol 12(8):1038–1044. https://doi.org/10.1016/j.tranon.2019.04.014

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zheng M et al (2019) Exosomal let-7d-3p and miR-30d-5p as diagnostic biomarkers for non-invasive screening of cervical cancer and its precursors. Mol Cancer 18(1):1–8. https://doi.org/10.1186/s12943-019-0999-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Posdoctoral fellowship awarded CVU (417965) by Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico. Consejo Nacional de Ciencia y Tecnología (CONACYT) (FOSEC-SS/IMSS/ISSSTE A3-S-43439).

Author information

Authors and Affiliations

Authors

Contributions

JAJ-A: writing neurodegenerative disease section and conceptualization (lead). JCF-M: writing renal and cardiovascular disease sections, review and editing (equal). AKG-P: conceptualization (equal), writing cancer section, original draft (supporting), review and editing (lead).

Corresponding author

Correspondence to Ana Karen González-Palomo.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Avalos, J.A., Fernández-Macías, J.C. & González-Palomo, A.K. Circulating exosomal MicroRNAs: New non-invasive biomarkers of non-communicable disease. Mol Biol Rep 48, 961–967 (2021). https://doi.org/10.1007/s11033-020-06050-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06050-w

Keywords

Navigation