Skip to main content
Log in

Expression profile of stem cell markers and ABC transporters in 5-fluorouracil resistant Hep-2 cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Resistance of laryngeal squamous cell carcinoma cells to traditional therapeutic regimens still remains to be a major reason for therapeutic failure in patients. In this study, we aimed at investigating the expression profiles of ATP-binding cassette (ABC) transporters and stem cell markers in 5-fluorouracil (5-FU) resistant laryngeal Hep-2 cells. We treated parental Hep-2 cells, with stepwise increased doses of 5-FU for almost 1 year to develop 5-FU resistant sub-lines with resistance against varying levels of 5-FU concentrations (4 sub-lines resistant to 1, 2, 4, and eightfold of 5-FU). Then, we measured the expression levels of 10 genes from ABC transporters family and 4 stem cell associated markers using quantitative reverse transcription polymerase chain reaction (qRT-PCR) to find out a potential relationship between these markers and chemoresistance. We found that stemness-associated markers had elevated expressions from the beginning of 5-FU resistance acquisition. Their expressions elevated stepwise while parental Hep-2 cells got resistance to higher doses of 5-FU. Expressions of tested ABC transporters (ABCA5, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC5, ABCC10 and ABCF2, and ABCG2) were also deregulated in 5-FU resistant Hep-2 cells. Although their expressions remained unaltered at the beginning of acquisition of resistance, expressions of ABC transporters except from ABCB6 increased significantly when cells became resistant to higher doses of 5-FU. Our results suggest that enrichment of cells with stemness characteristics and upregulation of ABC transporters might be amongst the crucial contributors of chemoresistance in laryngeal cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yu D, Liu Y, Yang J et al (2015) Clinical implications of BMI-1 in cancer stem cells of laryngeal carcinoma. Cell Biochem Biophys 71:261–269

    CAS  PubMed  Google Scholar 

  2. https://seer.cancer.gov/statfacts/html/laryn.html: Surveillance, Epidemiology, and End Results Program. 2015.

  3. Yilmaz SS, Guzel E, Karatas OF, Yilmaz M, Creighton CJ, Ozen M (2015) MiR-221 as a Pre- and Postoperative Plasma Biomarker for Larynx Cancer Patients. Laryngoscope 125:E377–E381

    CAS  PubMed  Google Scholar 

  4. Yilmaz M, Karatas OF, Yuceturk B, Dag H, Yener M, Ozen M (2015) Alpha-B-crystallin expression in human laryngeal squamous cell carcinoma tissues. Head and Neck-Journal For the Sciences and Specialties of the Head and Neck 37:1344–1348

    Google Scholar 

  5. Collaborators GDaIIaP: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392: 1789–1858, 2018.

  6. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424

    PubMed  Google Scholar 

  7. https://www.cancer.org: Laryngeal and Hypopharyngeal Cancer. American Cancer Society2015.

  8. Howlader N, Noone AM, Krapcho M, et al.: SEER Cancer Statistics Review, 1975–2014. 2016.

  9. Karatas OF, Yuceturk B, Suer I, et al.: The role of miR-145 in Human Laryngeal Squamous Cell Carcinoma. Head&Neck2015.

  10. Pasello M, Giudice AM, Scotlandi K (2020) The ABC subfamily A transporters: Multifaceted players with incipient potentialities in cancer. Semin Cancer Biol 60:57–71

    CAS  PubMed  Google Scholar 

  11. Mohiuddin IS, Wei SJ, Kang MH (2020) Role of OCT4 in cancer stem-like cells and chemotherapy resistance. Biochim Biophys Acta Mol Basis Dis 1866:165432

    CAS  PubMed  Google Scholar 

  12. Sharom FJ (2008) ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 9:105–127

    CAS  PubMed  Google Scholar 

  13. Fletcher JI, Haber M, Henderson MJ, Norris MD (2010) ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 10:147–156

    CAS  PubMed  Google Scholar 

  14. Begicevic RR and Falasca M: ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci 182017.

  15. Guzel E, Karatas OF, Duz MB, Solak M, Ittmann M, Ozen M (2014) Differential Expression of Stem Cell Markers and ABCG2 in Recurrent Prostate Cancer. Prostate 74:1498–1505

    CAS  PubMed  Google Scholar 

  16. Thomas ML, Coyle KM, Sultan M, Vaghar-Kashani A, Marcato P (2014) Chemoresistance in Cancer Stem Cells and Strategies to Overcome Resistance. Chemotherapy 3:125

    Google Scholar 

  17. Karatas OF, Guzel E, Duz MB, Ittmann M, Ozen M (2016) The role of ATP-binding cassette transporter genes in the progression of prostate cancer. Prostate 76:434–444

    CAS  PubMed  Google Scholar 

  18. Yang CG, Ciccolini J, Blesius A et al (2011) DPD-based adaptive dosing of 5-FU in patients with head and neck cancer: impact on treatment efficacy and toxicity. Cancer Chemother Pharmacol 67:49–56

    CAS  PubMed  Google Scholar 

  19. Galbiatti AL, Caldas HC, Maniglia JV, Pavarino EC, Goloni-Bertollo EM (2014) Gene expression profile of 5-fluorouracil metabolic enzymes in laryngeal cancer cell line: predictive parameters for response to 5-fluorouracil-based chemotherapy. Biomed Pharmacother 68:515–519

    CAS  PubMed  Google Scholar 

  20. Saif MW, Choma A, Salamone SJ, Chu E (2009) Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst 101:1543–1552

    CAS  PubMed  Google Scholar 

  21. Budach W, Hehr T, Budach V, Belka C, Dietz K (2006) A meta-analysis of hyperfractionated and accelerated radiotherapy and combined chemotherapy and radiotherapy regimens in unresected locally advanced squamous cell carcinoma of the head and neck. BMC Cancer 6:28

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu CZ, Xie J, Jin B et al (2013) Gene and microRNA expression reveals sensitivity to paclitaxel in laryngeal cancer cell line. Int J Clin Exp Pathol 6:1351–1361

    PubMed  PubMed Central  Google Scholar 

  23. Xu CZ, Shi RJ, Chen D et al (2013) Potential biomarkers for paclitaxel sensitivity in hypopharynx cancer cell. Int J Clin Exp Pathol 6:2745–2756

    PubMed  PubMed Central  Google Scholar 

  24. Dong JR, Guo N, Zhao JP, Liu PD, Feng HH, Li Y (2013) Inhibition of nemo-like kinase increases taxol sensitivity in laryngeal cancer. Asian Pac J Cancer Prev 14:7137–7141

    PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  26. Li L, Jiang AC, Dong P, Wan Y, Yu ZW (2007) The characteristics of Hep-2 cell with multiple drug resistance induced by Taxol. Otolaryngol Head Neck Surg 137:659–664

    PubMed  Google Scholar 

  27. Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG (2016) Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 380:413–423

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hashemi Goradel N, Ghiyami-Hour F, Jahangiri S et al (2018) Nanoparticles as new tools for inhibition of cancer angiogenesis. J Cell Physiol 233:2902–2910

    CAS  PubMed  Google Scholar 

  29. Mirzaei H, Sahebkar A, Avan A et al (2016) Application of Mesenchymal Stem Cells in Melanoma: A Potential Therapeutic Strategy for Delivery of Targeted Agents. Curr Med Chem 23:455–463

    CAS  PubMed  Google Scholar 

  30. Hesari A, Azizian M, Sheikhi A et al (2019) Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int J Cancer 144:1215–1226

    CAS  PubMed  Google Scholar 

  31. Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H (2019) Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res 147:104353

    CAS  PubMed  Google Scholar 

  32. Mirzaei HR, Pourghadamyari H, Rahmati M et al (2018) Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett 423:95–104

    CAS  PubMed  Google Scholar 

  33. Mirzaei H, Sahebkar A, Sichani LS et al (2018) Therapeutic application of multipotent stem cells. J Cell Physiol 233:2815–2823

    CAS  PubMed  Google Scholar 

  34. Lage H (2008) An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 65:3145–3167

    CAS  PubMed  Google Scholar 

  35. Shukla S, Ohnuma S, Ambudkar SV (2011) Improving cancer chemotherapy with modulators of ABC drug transporters. Curr Drug Targets 12:621–630

    CAS  PubMed  PubMed Central  Google Scholar 

  36. O'Connor R (2009) A review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance. Curr Cancer Drug Targets 9:273–280

    CAS  PubMed  Google Scholar 

  37. Chu E, Callender MA, Farrell MP, Schmitz JC (2003) Thymidylate synthase inhibitors as anticancer agents: from bench to bedside. Cancer Chemother Pharmacol 52(Suppl 1):S80–89

    CAS  PubMed  Google Scholar 

  38. Pratt S, Shepard RL, Kandasamy RA, Johnston PA, Perry W, Dantzig AH (2005) The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 4:855–863

    CAS  PubMed  Google Scholar 

  39. Dizdarevic S, Peters AM (2011) Imaging of multidrug resistance in cancer. Cancer Imaging 11:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gillet JP, Gottesman MM (2011) Advances in the molecular detection of ABC transporters involved in multidrug resistance in cancer. Curr Pharm Biotechnol 12:686–692

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Robey RW, Massey PR, Amiri-Kordestani L, Bates SE (2010) ABC transporters: unvalidated therapeutic targets in cancer and the CNS. Anticancer Agents Med Chem 10:625–633

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang JP, Liu Y, Zhong W, Yu D, Wen LJ, Jin CS (2011) Chemoresistance of CD133+ cancer stem cells in laryngeal carcinoma. Chin Med J (Engl) 124:1055–1060

    CAS  Google Scholar 

  43. Xie T, Geng J, Wang Y et al (2017) FOXM1 evokes 5-fluorouracil resistance in colorectal cancer depending on ABCC10. Oncotarget 8:8574–8589

    PubMed  Google Scholar 

  44. Setia N, Abbas O, Sousa Y, Garb JL, Mahalingam M (2012) Profiling of ABC transporters ABCB5, ABCF2 and nestin-positive stem cells in nevi, in situ and invasive melanoma. Mod Pathol 25:1169–1175

    CAS  PubMed  Google Scholar 

  45. Wang H, Li JM, Wei W et al (2020) Regulation of ATP-binding cassette subfamily B member 1 by Snail contributes to chemoresistance in colorectal cancer. Cancer Sci 111:84–97

    CAS  PubMed  Google Scholar 

  46. Okamoto A, Chikamatsu K, Sakakura K, Hatsushika K, Takahashi G, Masuyama K (2009) Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol 45:633–639

    CAS  PubMed  Google Scholar 

  47. Liu YS, Hsu HC, Tseng KC, Chen HC, Chen SJ (2013) Lgr5 promotes cancer stemness and confers chemoresistance through ABCB1 in colorectal cancer. Biomed Pharmacother 67:791–799

    CAS  PubMed  Google Scholar 

  48. Park S, Shimizu C, Shimoyama T et al (2006) Gene expression profiling of ATP-binding cassette (ABC) transporters as a predictor of the pathologic response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat 99:9–17

    CAS  PubMed  Google Scholar 

  49. Suer I, Karatas OF, Yuceturk B et al (2014) Characterization of stem-like cells directly isolated from freshly resected laryngeal squamous cell carcinoma specimens. Curr Stem Cell Res Ther 9:347–353

    CAS  PubMed  Google Scholar 

  50. Yu H, Zhang CM, Wu YS (2010) Research progress in cancer stem cells and their drug resistance. Chin J Cancer 29:261–264

    PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MBD and OFK designed the study. MBD and OFK collected and analyzed the data. MBD and OFK wrote the paper.

Corresponding author

Correspondence to Omer Faruk Karatas.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 190 kb)

Supplementary file2 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duz, M.B., Karatas, O.F. Expression profile of stem cell markers and ABC transporters in 5-fluorouracil resistant Hep-2 cells. Mol Biol Rep 47, 5431–5438 (2020). https://doi.org/10.1007/s11033-020-05633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05633-x

Keywords

Navigation