Skip to main content
Log in

Nitric oxide mediates cell aggregation and mesenchymal to epithelial transition in anoikis-resistant lung cancer cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cancer cell aggregation has been long known to facilitate metastatic potential of cancer cells. In addition, the presence of nitric oxide (NO) in cancer area may have a significant impact on aggregation behavior of the cells. We show herein that lung cancer H460 cells possessing high ability of anoikis resistance formed loose aggregates in detached condition. Importantly, NO treatment tightened the aggregates by enhancing cell–cell interaction via E-cadherin-dependent mechanism, and such E-cadherin contact increased anoikis resistance potential by up-regulating pro-survival signals of the cells including active ATP-dependent tyrosine kinase and extracellular-regulated protein kinases (ERK1/2). Since an increase of E-cadherin was frequently found in mesenchymal to epithelial transition (MET) process, we further tested the cells for MET markers and found that NO treatment of these cells significantly enhanced MET. As aggregation and MET of cancer cells may facilitate cancer metastasis by many means, the insights gained from the present study could benefit the deep understanding in the biology of cancer cell metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AKT:

ATP-dependent tyrosine kinase

Cav-1:

Caveolin-1

NO:

Nitric oxide

XTT:

2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt

E-cad:

E-cadherin

N-cad:

N-cadherin

Vim:

Vimentin

p-AKT:

Phosphorylated AKT

PBS:

Phosphate-buffered saline

Mcl-1:

Myeloid cell leukemia sequence 1

TBST:

Tris-buffered saline with 0.1 % Tween

PI:

Propidium iodide

References

  1. Glinsky VV, Glinsky GV, Glinskii OV, Huxley VH, Turk JR, Mossine VV, Deutscher SL, Pienta KJ, Quinn TP (2003) Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium 1. Cancer Res 63:3805–3811

    CAS  PubMed  Google Scholar 

  2. Saiki I, Naito S, Yoneda J, Azuma I, Price JE, Fidler IJ (1991) Characterization of the invasive and metastatic phenotype in human renal cell carcinoma. Clin Exp Metastasis 9:551–566

    Article  CAS  PubMed  Google Scholar 

  3. Glinsky GV, Glinsky VV (1996) Apoptosis and metastasis: a superior resistance of metastatic cancer cells to programmed cell death. Cancer Lett 101:43–51

    Article  CAS  PubMed  Google Scholar 

  4. Topal B, Roskams T, Fevery J, Penninckx FJ (2003) Aggregated colon cancer cells have a higher metastatic efficiency in the liver compared with nonaggregated cells: an experimental study. Surg Res 112:31–37

    Article  CAS  Google Scholar 

  5. Fidler IJ (1975) The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9:223–227

    Article  Google Scholar 

  6. Guadamillas MC, Cerezo A, Del Pozo MA (2011) Overcoming anoikis–pathways to anchorage-independent growth in cancer. J Cell Sci 124(Pt 19):3189–3197. doi:10.1242/jcs.072165

    Article  CAS  PubMed  Google Scholar 

  7. Simpson CD, Anyiwe K, Schimmer AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272:177–185. doi:10.1016/j.canlet.2008.05.029

    Article  CAS  PubMed  Google Scholar 

  8. Chunhacha P, Pongrakhananon V, Rojanasakul Y, Chanvorachote P (2012) Caveolin-1 regulates Mcl-1 stability and anoikis in lung carcinoma cells. Am J Physiol Cell Physiol 302:1284–1292

    Article  Google Scholar 

  9. Ma XK, Wang L, Li Y, Yang XM, Zhao P, Tang H, Zhu P, Li L, Chen ZN (2010) HAb18G/CD147 cell–cell contacts confer resistance of a HEK293 subpopulation to anoikis in an E-cadherin-dependent manner. BMC Cell Biol 11:27

    Article  PubMed Central  PubMed  Google Scholar 

  10. Shen X, Kramer RH (2004) Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. Am J Pathol 165:1315–1329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Halim H, Luanpitpong S, Chanvorachote P (2012) Acquisition of anoikis resistance up-regulates caveolin-1 expression in human non-small cell lung cancer cells. Anticancer Res 32:1649–1658

    CAS  PubMed  Google Scholar 

  12. Zhao M, Gao Y, Wang L, Liu S, Han B, Ma L, Ling Y, Mao S, Wang X (2013) Overexpression of integrin-linked kinase promotes lung cancer cell migration and invasion via NF-κB-mediated upregulation of matrix metalloproteinase-9. Int J Med Sci 10:995–1002. doi:10.7150/ijms.5963

    Article  PubMed Central  PubMed  Google Scholar 

  13. Thiery JP (2002) Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454

    Article  CAS  PubMed  Google Scholar 

  14. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial–mesenchymal transitions in development and disease. Cell 139:871–890

    Article  CAS  PubMed  Google Scholar 

  15. Jia J, Zhang W, Liu JY, Chen G, Liu H, Zhong HY, Liu B, Cai Y, Zhang JL, Zhao YF (2012) Epithelial mesenchymal transition is required for acquisition of anoikis resistance and metastatic potential in adenoid cystic carcinoma. PLoS One 7:e51549. doi:10.1371/journal.pone.0051549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Reddy P, Liu L, Ren C, Lindgren P, Boman K, Shen Y, Lundin E, Ottander U, Rytinki M, Liu K (2005) Formation of E-cadherin-mediated cell–cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells. Mol Endocrinol 19:2564–2578

    Article  CAS  PubMed  Google Scholar 

  17. Alpaugh ML, Tomlinson JS, Kasraeian S, Barsky SH (2002) Cooperative role of E-cadherin and sialyl-Lewis X/A-deficient MUC1 in the passive dissemination of tumor emboli in inflammatory breast carcinoma. Oncogene 21:3631–3643

    Article  CAS  PubMed  Google Scholar 

  18. Auersperg N, Pan J, Grove BD, Peterson T, Fisher J, Maines-Bandiera S, Somasiri A, Roskelley CD (1999) E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci USA 96:6249–6254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Manda G, Nechifor MT, Neagu T-M (2009) Reactive oxygen species, cancer and anti-cancer therapies. Curr Chem Biol 3:22–46

    Article  Google Scholar 

  20. Keibel A, Vb Singh, Sharma MC (2009) Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des 15:1949–1955

    Article  CAS  PubMed  Google Scholar 

  21. Lala PK, Chakraborty C (2001) Role of nitric oxide in carcinogenesis and tumour progression. Lancet Oncol 3:149–156

    Article  Google Scholar 

  22. Masri FA, Comhair SAA, Koeck T, Xu W, Janocha A, Ghosh S, Dweik RA, Golish J, Kinter M, Stuehr DJ, Erzurum SC, Aulak KS (2005) Abnormalities in nitric oxide and its derivatives in lung cancer. Am J Respir Crit Care Med 172:597–605. doi:10.1164/rccm.200411-1523OC

    Article  PubMed Central  PubMed  Google Scholar 

  23. Esme H, Cemek M, Sezer M, Saglam H, Demir A, Melek H, Unlu M (2008) High levels of oxidative stress in patients with advanced lung cancer. Respirology 13:112–116

    Article  PubMed  Google Scholar 

  24. Chanvorachote P, Nimmannit U, Lu Y, Talbott S, Jiang BH, Rojanasakul Y (2009) Nitric oxide regulates lung carcinoma cell anoikis through inhibition of ubiquitin-proteasomal degradation of caveolin-1. J Biol Chem 284:28476–28484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Chanvorachote P, Nimmannit U, Stehlik C, Wang L, Jiang BH, Ongpipatanakul B, Rojanasakul Y (2006) Nitric oxide regulates cell sensitivity to cisplatin-induced apoptosis through S-nitrosylation and inhibition of Bcl-2 ubiquitination. Cancer Res 66:6353–6360

    Article  CAS  PubMed  Google Scholar 

  26. Chanvorachote P, Nimmannit U, Wang L, Stehlik C, Lu B, Azad N, Rojanasakul Y (2005) Nitric oxide negatively regulates Fas-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J Biol Chem 280:42044–42050

    Article  CAS  PubMed  Google Scholar 

  27. Sanuphan A, Chunhacha P, Pongrakhananon V, Chanvorachote P (2013) Long-term nitric oxide exposure enhances lung cancer cell migration. Biomed Res Int 2013:186972. doi: 10.1155/2013/186972

  28. Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  CAS  PubMed  Google Scholar 

  29. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–6474. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  30. Chunhacha P, Sriuranpong V, Chanvorachote P (2013) Epithelial-mesenchymal transition mediates anoikis resistance and enhances invasion in pleural effusion-derived human lung cancer cells. Oncol Lett 5:1043–1047

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship, Ratchadaphiseksompot Endowment Fund, Chulalongkorn University (RES560530132-HR), and Mr. Krich Rajprasit, proofreader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pithi Chanvorachote.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powan, P., Chanvorachote, P. Nitric oxide mediates cell aggregation and mesenchymal to epithelial transition in anoikis-resistant lung cancer cells. Mol Cell Biochem 393, 237–245 (2014). https://doi.org/10.1007/s11010-014-2066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2066-7

Keywords

Navigation