Skip to main content

Advertisement

Log in

Increase in Proliferation and Differentiation of Neural Progenitor Cells Isolated from Postnatal and Adult Mice Brain by Wnt-3a and Wnt-5a

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Wnt signaling is implicated in the control of cell growth and differentiation during CNS development. These findings are based on studies of mouse and chick models. However, the action of Wnt signaling, at the cellular level, is poorly understood. In this study, we investigated the roles of Wnt-3a and Wnt-5a on differentiation and proliferation of postnatal neural progenitor cells (NPCs) in mice.

NPCs were isolated from the subventricular zone (SVZ) of PN-1 and adult ICR mice. Plasmids containing active Wnt-3a or Wnt-5a were transfected to NPCs; their effects on the formation of neurospheres and differentiation into neuronal cells were then determined. Transfection of Wnt-3a and Wnt-5a plasmids promoted regeneration of neurospheres and differentiation into Map2-positive cells, and decreased differentiation into GFAP-positive cells. The conditioned media obtained from Wnt-3a or Wnt-5a transfected NPCs showed similar effects on differentiation of NPCs with cDNA transfection, although the magnitude of stimulatory effect was less than that by plasmid transfection. Wnt-3a and Wnt-5a transfection did not affect Brdu incorporation of neuronal or glial progenitors in differentiation media. Wnt-3a and Wnt-5a plasmid transfection and the treatment of Wnt-3a and Wnt-5a conditioned media increased $β −cateninlevelsinNPCs. Wnt−3ahadagreatereffecton β $-catenin levels than Wnt-5a. The PKC inhibitor completely blocked the Wnt-5a effect on neuronal differentiation in NPCs. These findings suggest that Wnt-3a and Wnt-5a each have distinct effects on the proliferation and differentiation of NPCs in postnatal mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. 1. Anderson DJ: Stem cells and pattern formation in the nervous system the possible versus the actual. Neuron 30: 19–35, 2001

    Article  PubMed  CAS  Google Scholar 

  2. 2. Gage FH: Mammalian neural stem cells. Science 287: 1433–1438, 2002

    Article  ADS  Google Scholar 

  3. 3. Temple S: The development of NPCs. Nature 414: 112–117, 2001

    Article  PubMed  CAS  ADS  Google Scholar 

  4. 4. Salinas PC: Wnt factors in axonal remodelling and synaptogenesis, Biochem Soc Symp. 65: 101–109, 1999

    PubMed  CAS  Google Scholar 

  5. 5. Patapoutian A, Reichardt LF: Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol. 10: 392–399, 2000

    Article  PubMed  CAS  Google Scholar 

  6. 6. Dickinson ME, Krumlauf R, McMahon AP: Evidence for a mitogenic effect of Wnt-1 in the developing mammalian central nervous system. Development 120: 1453–1471, 1994

    PubMed  CAS  Google Scholar 

  7. 7. Ikeya M, Lee SM, Johnson JE, McMahon AP, Takada S: Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389: 966–970, 1997

    Article  PubMed  CAS  ADS  Google Scholar 

  8. 8. Lee SM, Tole S, Grove E, McMahon AP: A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127: 457–467, 2000

    PubMed  CAS  Google Scholar 

  9. 9. McMahon AP, Bradley A: The wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62: 1073–1085, 1990

    Article  PubMed  CAS  Google Scholar 

  10. 10. Thomas KR, Capecchi MR: Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346: 847–850, 1990

    Article  PubMed  CAS  ADS  Google Scholar 

  11. 11. Megason SG, McMahon AP: A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129: 2087–2098, 2002

    PubMed  CAS  Google Scholar 

  12. 12. Dorsky RI, Moon RT, Raible DW: Control of neural crest cell fate by the Wnt signalling pathway. Nature 396: 370–373, 1998

    Article  PubMed  CAS  ADS  Google Scholar 

  13. 13. Lee HY, Kleber M, Hari L, Brault V, Suter U, Taketo MM, Kemler R, Sommer L: Instructive role of Wntβ-catenin in sensory fate specification in neural crest stem cells. Science 303: 1020–1023, 2004

    Article  PubMed  CAS  ADS  Google Scholar 

  14. 14. Muroyama Y, Fujihara M, Ikeya M, Kondoh H, Takada S: Wnt signaling plays an essential role in neuronal specification of the dorsal spinal cord Genes Dev 16: 548–553, 2002

    Article  PubMed  CAS  Google Scholar 

  15. 15. Reya T, Duncan AW, Ailles L, Domen J, Scherer DS, Willert K, Hintz L, Nusse R, Weissman IL: A role for Wnt signalling in self-renewal of haematopoietic stem cells Nature 423: 409–414, 2003

    Article  PubMed  CAS  ADS  Google Scholar 

  16. 16. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, Nusse R: Wnt proteins are lipid-modified and can act as stem cell growth factors Nature 423: 448–452, 2003

    Article  PubMed  CAS  ADS  Google Scholar 

  17. 17. Walsh J, Andrews PW: Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell. APMIS 111: 197–211, 2003

    Article  PubMed  CAS  Google Scholar 

  18. 18. Lyu J, Costantini F, Jho EH, Joo CK: Ectopic expression of Axin blocks neuronal differentiation of embryonic carcinoma P19 cells. J Biol Chem 278: 13487–13495, 2003

    Article  PubMed  CAS  Google Scholar 

  19. 19. Tang K, Yang J, Gao X, Wang C, Liu L, Kitani H, Atsumi T, Jing N: Wnt-1 promotes neuronal differentiation and inhibits gliogenesis in P19 cells. Biochem Biophys Res Commun 293: 167–173, 2002

    Article  PubMed  CAS  Google Scholar 

  20. 20. Yang J, Sun H, Bian W, Jing NH: Neural differentiation of Wnt-1 overexpression P19 cells. Sheng Li Xue Bao 50: 289–295, 1998

    PubMed  CAS  Google Scholar 

  21. 21. Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, Masuyama N, Gotoh Y: The Wntβ-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131: 2791–2801, 2004

    Article  PubMed  CAS  Google Scholar 

  22. 22. Muroyama Y, Kondoh H, Takada S: Wnt proteins promote neuronal differentiation in NPCs culture. Biochem Biophys Res Commun 313: 915–921, 2004

    Article  PubMed  CAS  Google Scholar 

  23. 23. Castelo-Branco G, Wagner J, Rodriguez FJ, Kele J, Sousa K, Rawal N, Pasolli HA, Fuchs E, Kitajewski J, Arenas E: Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA 100: 12747–12752, 2003

    Article  PubMed  CAS  ADS  Google Scholar 

  24. 24. Ahmed S, Reynolds BA, Weiss S: BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors. J Neurosci 15: 5765–5778, 1995

    PubMed  CAS  Google Scholar 

  25. 25. Arsenijevic Y, Weiss S: IGF-I is a differentiation factor for post-mitotic CNS stem cell-derived neuronal precursors: Distinct actions from those of BDNF. J Neurosci 18: 2118–2128, 1998

    PubMed  CAS  Google Scholar 

  26. 26. Reynolds BA, Tetzlaff W, Weiss S: A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci 12: 4565–4574, 1992

    PubMed  CAS  Google Scholar 

  27. 27. Reynolds BA, Weiss S: Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710, 1992

    PubMed  CAS  ADS  Google Scholar 

  28. 28. Kang SK, Lee RH, Jung JS: Effect of brain-derived neurotrophic factor on neural differentiation of mouse embryonic stem cells and neural precursor cells. Neurosci Res commun 29: 183–192, 2002

    Article  CAS  Google Scholar 

  29. 29. Huelsken J, Birchmeier W: New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11: 547–553, 2001

    Article  PubMed  CAS  Google Scholar 

  30. 30. Chenn A, Walsh CA: Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297: 365–369, 2002

    Article  PubMed  CAS  ADS  Google Scholar 

  31. 31. Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, Gage FH: Wnt signalling regulates adult hippocampal neurogenesis. Nature 437: 1370–1375, 2005

    Article  PubMed  CAS  ADS  Google Scholar 

  32. 32. Bienz M: Spindles cotton on to junctions, APC and EB1. Nat Cell Biol 3: 67–68, 2001

    Article  CAS  Google Scholar 

  33. 33. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT: The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16: 279–283, 2000

    Article  PubMed  CAS  Google Scholar 

  34. 34. Meneghini MD, Ishitani T, Carter JC, Hisamoto N, Ninomiya-Tsuji J, Thorpe CJ, Hamill DR, Matsumoto K, Bowerman B: MAP kinase and Wnt pathways converge to downregulate an HMG-domain repressor in Caenorhabditis elegans. Nature 399: 793–797, 1999

    Article  PubMed  CAS  ADS  Google Scholar 

  35. 35. Thorpe CJ, Schlesinger A, Bowerman B: Wnt signalling in Caenorhabditis elegans: regulating repressors and polarizing the cytoskeleton. Trends Cell Biol 10: 10–17, 2000

    Article  PubMed  Google Scholar 

  36. 36. Sheldahl LC, Park M, Malbon CC, Moon RT: Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-proteindependent manner. Curr Biol 9: 695–698, 1999

    Article  PubMed  CAS  Google Scholar 

  37. 37. Civenni G, Holbro T, Hynes NE: Wnt-1 and Wnt-5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep 4: 166–171, 2003

    Article  PubMed  CAS  Google Scholar 

  38. 38. Kolkova K, Novitskaya V, Pedersen N, Berezin V, Bock E: Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway. J Neurosci. 20: 2238–2246, 2000

    PubMed  CAS  Google Scholar 

  39. 39. Yamanaka H, Moriguchi T, Masuyama N, Kusakabe M, Hanafusa H, Takada R, Takada S, Nishida E: JNK functions in the non-canonical Wnt pathway to regulate convergent extension movements in vertebrates. EMBO Rep. 3: 69–75, 2002

    Article  PubMed  CAS  Google Scholar 

  40. 40. Wang H, Ikeda S, Kanno S, Guang LM, Ohnishi M, Sasaki M, Kobayashi T, Tamura S: Activation of c-Jun amino-terminal kinase is required for retinoic acid-induced neural differentiation of P19 embryonal carcinoma cells. FEBS Lett 503: 91–96, 2001

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Sup Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J.M., Kim, J.H., Song, G.S. et al. Increase in Proliferation and Differentiation of Neural Progenitor Cells Isolated from Postnatal and Adult Mice Brain by Wnt-3a and Wnt-5a. Mol Cell Biochem 288, 17–28 (2006). https://doi.org/10.1007/s11010-005-9113-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9113-3

Keywords

Navigation