Skip to main content
Log in

Cytochrome c oxidase: exciting progress and remaining mysteries

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cytochrome c oxidase generates a proton motive force by two separate mechanisms. The first mechanism is similar to that postulated by Peter Mitchell, and is based on electrons and protons used to generate water coming from opposite sides of the membrane. The second mechanism was not initially anticipated, but is now firmly established as a proton pump. A brief review of the current state of our understanding of the proton pump of cytochrome oxidase is presented. We have come a long way since the initial observation of the pump by Mårten Wikström in 1977, but a number of essential questions remain to be answered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramson J, Riistama S et al (2000) The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nature Struct Biol 7:910–917

    Article  CAS  Google Scholar 

  • Artzatbanov VY, Konstantinov AA et al (1978) Involvement of intramitochondrial protons in redox reactions of cytochrome a. FEBS Lett 87:180–185

    Article  CAS  Google Scholar 

  • Babcock GT, Varotsis C (1993) Discrete steps in dioxygen activation—the cytochrome oxidase/O2 reaction. J Bioenerg Biomemb 25(2):71–80

    Article  CAS  Google Scholar 

  • Belevich I, Bloch DA et al (2007) Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc Natl Acad Sci U S A 104(8):2685–2690

    Article  CAS  Google Scholar 

  • Bloch D, Belevich I et al (2004) The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. PNAS 101(2):529–533

    Article  CAS  Google Scholar 

  • Brändén G, Pawate AS et al (2006) Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase. Proc Natl Acad Sci U S A 103(2):317–322

    Article  CAS  Google Scholar 

  • de Vries S (2008) The role of the conserved tryptophan272 of the Paracoccus denitrificans cytochrome c oxidase in proton pumping. Biochim Biophys Acta 1777(7–8):925–928

    Google Scholar 

  • Fadda E, Yu CH et al (2008) Electrostatic control of proton pumping in cytochrome c oxidase. Biochim Biophys Acta 1777(3):277–284

    Article  CAS  Google Scholar 

  • Faxén K, Gilderson G et al (2005) A mechanistic principle for proton pumping by cytochrome c oxidase. Nature 437:286

    Article  CAS  Google Scholar 

  • Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 7(96):2889–2907

    Article  Google Scholar 

  • Fetter JR, Qian J et al (1995) Possible proton relay pathways in cytochrome c oxidase. Proc Natl Acad Sci U S A 92:1604–1608

    Article  CAS  Google Scholar 

  • Gorbikova EA, Belevich NP et al (2007) Time-resolved ATR-FTIR spectroscopy of the oxygen reaction in the D124N mutant of cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 46(45):13141–13148

    Article  CAS  Google Scholar 

  • Hallén S, Brzezinski P et al (1994) Internal electron transfer in cytochrome c oxidase is coupled to the protonation of a group close to the bimetallic site. Biochemistry 33:1467–1472

    Article  Google Scholar 

  • Han S, Takahashi S et al (2000) Time dependence of the catalytic intermediates in cytochrome c oxidase. J Biol Chem 275(3):1910–1919

    Article  CAS  Google Scholar 

  • Han D, Namslauer A et al (2006) Replacing Asn207 by aspartate at the neck of the D channel in the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides results in decoupling the proton pump. Biochemistry 45(47):14064–14074

    Article  CAS  Google Scholar 

  • Hellwig P, Behr J et al (1998) Involvement of glutamic acid 278 in the redox reaction of the cytochrome c oxidase from Paracoccus denitrificans investigated by FT-IR spectroscopy. Biochemistry 37:7390–7399

    Article  CAS  Google Scholar 

  • Hemp J, Robinson DE et al (2006) Evolutionary migration of a post-translationally modified active-site residue in the proton-pumping heme–copper oxygen reductases. Biochemistry 45(51):15405–15410

    Article  CAS  Google Scholar 

  • Iwata S, Ostermeier C et al (1995) Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660–669

    Article  CAS  Google Scholar 

  • Jasaitis A, Verkhovsky MI et al (1999) Assignment and charge translocation stoichiometries of the major electrogenic phases in the reaction of cytochrome c oxidase with dioxygen. Biochemistry 38:2697–2706

    Article  CAS  Google Scholar 

  • Kaila VR, Verkhovsky M et al (2008a) Prevention of leak in the proton pump of cytochrome c oxidase. Biochim Biophys Acta 1777(7–8):890–892

    CAS  Google Scholar 

  • Kaila VR, Verkhovsky MI et al (2008b) Glutamic acid 242 is a valve in the proton pump of cytochrome c oxidase. Proc Natl Acad Sci U S A 105(17):6255–6259

    Article  CAS  Google Scholar 

  • Kannt A, Soulimane T et al (1998) Electrical current generation and proton pumping catalyzed by the ba3-type cytochrome c oxidase from Thermus thermophilus. FEBS 434:17–22

    Article  CAS  Google Scholar 

  • Kitagawa T, Ogura T (1997) Oxygen activation mechanism at the binuclear site of heme–copper oxidase superfamily as revealed by time-resolved resonance Raman spectroscopy. Prog Inorg Chem 45:431–479

    Article  CAS  Google Scholar 

  • Konstantinov AA, Siletsky S et al (1997) The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer. Proc Natl Acad Sci U S A 94:9085–9090

    Article  CAS  Google Scholar 

  • Lee H-m, Das TK et al (2000) Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a. Biochemistry 39:2989–2996

    Article  CAS  Google Scholar 

  • Lepp H, Salomonsson L et al (2008a) Impaired proton pumping in cytochrome c oxidase upon structural alteration of the D pathway. Biochim Biophys Acta 1777(7–8):897–903

    CAS  Google Scholar 

  • Lepp H, Svahn E et al (2008b) Charge transfer in the K proton pathway linked to electron transfer to the catalytic site in cytochrome c oxidase. Biochemistry 47(17):4929–4935

    Article  CAS  Google Scholar 

  • Luna VM, Chen Y et al (2008) Crystallographic studies of Xe and Kr binding within the large internal cavity of cytochrome ba3 from Thermus thermophilus: structural analysis and role of oxygen transport channels in the heme–Cu oxidases. Biochemistry 47(16):4657–4665

    Article  CAS  Google Scholar 

  • Muramoto K, Hirata K et al (2007) A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Proc Natl Acad Sci U S A 104(19):7881–7886

    Article  CAS  Google Scholar 

  • Nagle JF, Tristam-Nagle S (1983) Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membr Biol 74:1–14

    Article  CAS  Google Scholar 

  • Namslauer A, Aagaard A et al (2003a) Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase. Bichemistry 42:1488–1498

    Article  CAS  Google Scholar 

  • Namslauer A, Pawate A et al (2003b) Redox-coupled proton translocation in biological systems: proton shuttling in cytochrome c oxidase. Proc Natl Acad Sci U S A 100(26):15543–15547

    Article  CAS  Google Scholar 

  • Nyquist RM, Heitbrink D et al (2001) Perfusion-induced redox differences in cytochrome c oxidase: ATR/FT-IR spectroscopy. FEBS Letters 505:63–67

    Article  CAS  Google Scholar 

  • Ogura T, Takahashi S et al (1993) Time-resolved resonance Raman elucidation of the pathway for dioxygen reduction by cytochrome c oxidase`. J Am Chem Soc 115:8527–8536

    Article  CAS  Google Scholar 

  • Olsson MH, Warshel A (2006) Monte Carlo simulations of proton pumps: on the working principles of the biological valve that controls proton pumping in cytochrome c oxidase. Proc Natl Acad Sci USA 103(17):6500–6505

    Article  CAS  Google Scholar 

  • Ostermeier C, Harrenga A et al (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc Natl Acad Sci U S A 94:10547–10553

    Article  CAS  Google Scholar 

  • Pawate AS et al (2002) A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steady-state activity but completely eliminates proton pumping. Biochemistry 41:13417–13423

    Article  CAS  Google Scholar 

  • Pereira MM, Santana M et al (2001) A novel scenario for the evaluation of haem-copper oxygen reductases. Biochim Biophys Acta 1505:185–208

    Article  CAS  Google Scholar 

  • Pereira MM, Sousa FL et al (2008) Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. Biochim Biophys Acta 1777(7–8):929–934

    CAS  Google Scholar 

  • Pfitzner U, Hoffmeier K et al (2000) Tracing the D-pathway in reconstituted site-directed mutants of cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 39(23):6756–6762

    Article  CAS  Google Scholar 

  • Pisliakov AV, Sharma PK et al (2008) Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase. Proc Natl Acad Sci U S A 105(22):7726–7731

    Article  CAS  Google Scholar 

  • Popovic DM, Stuchebrukhov AA (2004) Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: coulomb pump model with kinetic gating. FEBS Lett 566:126–130

    Article  CAS  Google Scholar 

  • Popovic DM, Stuchebrukhov AA (2005) Proton exit channels in bovine cytochrome c oxidase. J Phys Chem B 109:1999–2006

    Article  CAS  Google Scholar 

  • Proshlyakov DA, Pressler MA et al (2000) Oxygen activation and reduction in respiration: involvement of redox-active tyrosine 244. Science 290:1588–1591

    Article  CAS  Google Scholar 

  • Qin L, Hiser C et al (2006) Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Proc Natl Acad Sci U S A 103(44):16117–16122

    Article  CAS  Google Scholar 

  • Qin L, Mills DA et al (2007) Crystallographic location and mutational analysis of zn and cd inhibitory sites and role of lipidic carboxylates in rescuing proton path mutants in cytochrome C oxidase. Biochemistry 46(21):6239–6248

    Article  CAS  Google Scholar 

  • Rich PR (1995) Towards an understanding of the chemistry of oxygen reduction and proton translocation in the iron–copper respiratory oxidases. Aust J Plant Physiol 22:479–486

    Article  CAS  Google Scholar 

  • Rich PR, Meunier B et al (1996) Coupling of charge and proton movement in cytochrome c oxidase. Biochim Biophys Acta 1275:91–95

    Article  Google Scholar 

  • Rich PR, Jünemann S et al (1997) Protonmotive mechanism of haem-copper oxidases. J Bioenerg Biomembr 30(1):131–137

    Article  Google Scholar 

  • Riistama S, Hummer G et al (1997) Bound water in the proton translocation mechanism of the heme–copper oxidases. FEBS Lett 414(2):275–280

    Article  CAS  Google Scholar 

  • Salomonsson L, Faxen K et al (2005) The timing of proton migration in membrane-reconstituted cytochrome c oxidase. Proc Natl Acad Sci U S A 102(49):17624–17629

    Article  CAS  Google Scholar 

  • Shimokata K, Katayama Y et al (2007) The proton pumping pathway of bovine heart cytochrome c oxidase. Proc Natl Acad Sci U S A 104(10):4200–4205

    Article  CAS  Google Scholar 

  • Shinzawa-Itoh K, Aoyama H et al (2007) Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J 26(6):1713–1725

    Article  CAS  Google Scholar 

  • Siegbahn PE, Blomberg MR (2007) Energy diagrams and mechanism for proton pumping in cytochrome c oxidase. Biochim Biophys Acta 1767(9):1143–1156

    Article  CAS  Google Scholar 

  • Siletsky SA, Pawate AS et al (2004) Transmembrane charge separation during the Ferryl-oxo ∅ oxidized transition in a nonpumping mutant of cytochrome c oxidase. J Biol Chem 279(50):52558–52565

    Article  CAS  Google Scholar 

  • Siletsky SA, Belevich I et al (2007) Time-resolved single-turnover of ba3 oxidase from Thermus thermophilus. Biochim Biophys Acta 1767(12):1383–1392

    Article  CAS  Google Scholar 

  • Smirnova IA, Ädelroth P et al (1999) Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during Oxo-Ferryl formation. Biochemistry 38:6826–6833

    Article  CAS  Google Scholar 

  • Soulimane T, Buse G et al (2000) Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus. EMBO J 19(8):1766–1776

    Article  CAS  Google Scholar 

  • Sugitani R, Medvedev ES et al (2008) Theoretical and computational analysis of the membrane potential generated by cytochrome c oxidase upon single electron injection into the enzyme. Biochim Biophys Acta 1777:1129–1139

    Article  CAS  Google Scholar 

  • Svensson-Ek M, Abramson J et al (2002) The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321:329–339

    Article  CAS  Google Scholar 

  • Tsukihara T, Aoyama H et al (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–1074

    Article  CAS  Google Scholar 

  • Tsukihara T, Aoyama H et al (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science 272:1136–1144

    Article  CAS  Google Scholar 

  • Vakkasoglu AS, Morgan JE et al (2006) Mutations which decouple the proton pump of the cytochrome c oxidase from Rhodobacter sphaeroides perturb the environment of glutamate 286. FEBS Lett 580(19):4613–4617

    Article  CAS  Google Scholar 

  • Varotsis C, Zhang Y et al (1993) Resolution of the reaction sequence during the reduction of O2 by cytochrome oxidase. Proc Natl Acad Sci U S A 90:237–241

    Article  CAS  Google Scholar 

  • Verkhovsky MI, Morgan JE et al (1992) Intramolecular electron transfer in cytochrome c oxidase: a cascade of equilibria. Biochemistry 31:11860–11863

    Article  CAS  Google Scholar 

  • Verkhovsky MI, Morgan JE et al (1994) Oxygen binding and activation: early steps in the reaction of oxygen with cytochrome c oxidase. Biochemistry 33:3079–3086

    Article  CAS  Google Scholar 

  • Verkhovsky MI, Morgan JE et al (1997) Translocation of electrical charge during a single turnover of cytochrome-c oxidase. Biochim Biophys Acta 1318:6–10

    Article  CAS  Google Scholar 

  • Wikström M (1977) Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 266:271–273

    Article  Google Scholar 

  • Wikstrom M, Verkhovsky MI (2007) Mechanism and energetics of proton translocation by the respiratory heme–copper oxidases. Biochim Biophys Acta 1767(10):1200–1214

    Article  CAS  Google Scholar 

  • Wikström M, Verkhovsky MI et al (2003) Water-gated mechanism of proton translocation by cytochrome c oxidase. Biochim Biophys Acta 1604:61–65

    Article  CAS  Google Scholar 

  • Xu J, Sharpe MA et al (2007) Storage of an excess proton in the hydrogen-bonded network of the d-pathway of cytochrome C oxidase: identification of a protonated water cluster. J Am Chem Soc 129(10):2910–2913

    Article  CAS  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K et al (2000) X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase. J Inorg Biochem 82:1–7

    Article  CAS  Google Scholar 

  • Zheng X, Medvedev DM et al (2003) Computer simulation of water in cytochrome c oxidase. Biochim Biophys Acta 1557:99–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Gennis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brzezinski, P., Gennis, R.B. Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 40, 521–531 (2008). https://doi.org/10.1007/s10863-008-9181-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-008-9181-7

Keywords

Navigation