Skip to main content

Advertisement

Log in

Single nucleotide polymorphisms in PDCD6 gene are associated with the development of cervical squamous cell carcinoma

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

The programmed cell death 6 (PDCD6), discovered as a proapoptotic calcium-binding protein, has recently been found dysregulated in tumors of various origin and contributed to cancer cell viability. The aim of this study was to determine whether SNPs in PDCD6 are associated with cervical squamous cell carcinoma (CSCC). Polymerase chain reaction-restriction fragment length polymorphism method was used to genotype two tag SNPs (rs3756712 and rs4957014) of PDCD6 in 328 CSCC patients and 541 controls. Significantly increased CSCC risks were found to be associated with T allele of rs3756712 and G allele of rs4957014 (P = 0.017, OR = 1.320, and P = 0.007, OR = 1.321, respectively). CSCC risks were associated with these two SNPs in different genetic model (P = 0.04, OR = 1.78 for rs3756712 in a recessive model, and P = 0.006, OR = 2.01 for rs4957014 in a codominant model, respectively). Results of stratified analyses revealed that rs4957014 is associated with parametrial invasion of CSCC (P = 0.044, OR = 1.414). Our results suggest that these two tag SNPs of PDCD6 are associated with CSCC, indicating that PDCD6 may play an important role in the pathogenesis of CSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Forouzanfar MH, Foreman KJ, Delossantos AM et al (2011) Breast and cervical cancer in 187 countries between 1980 and 2010: a systematic analysis. Lancet 378(9801):1461–1484

    Article  PubMed  Google Scholar 

  2. Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB (2008) Cancer incidence in five continents. Volume IX. IARC scientific publications (160):1–837

  3. Ko SM, Kua EH, Fones CS (1999) Stress and the undergraduates. Singapore Med J 40(10):627–630

    CAS  PubMed  Google Scholar 

  4. Walboomers JM, Jacobs MV, Manos MM et al (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189(1):12–19

    Article  CAS  PubMed  Google Scholar 

  5. Vink JM, van Kemenade FJ, Meijer CJ, Casparie MK, Meijer GA, Boomsma DI (2011) Cervix smear abnormalities: linking pathology data in female twins, their mothers and sisters. Eur J Hum Genet : EJHG 19(1):108–111

    Article  PubMed Central  PubMed  Google Scholar 

  6. Magnusson PK, Sparen P, Gyllensten UB (1999) Genetic link to cervical tumours. Nature 400(6739):29–30

    Article  CAS  PubMed  Google Scholar 

  7. Couto E, Hemminki K (2006) Heritable and environmental components in cervical tumors. Int J Cancer 119(11):2699–2701

    Article  CAS  PubMed  Google Scholar 

  8. Ahlbom A, Lichtenstein P, Malmstrom H, Feychting M, Hemminki K, Pedersen NL (1997) Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst 89(4):287–293

    Article  CAS  PubMed  Google Scholar 

  9. de Freitas AC, Gurgel AP, Chagas BS, Coimbra EC, do Amaral CM (2012) Susceptibility to cervical cancer: an overview. Gynecol Oncol 126(2):304–311

  10. Vito P, Lacana E, D’Adamio L (1996) Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimer’s disease gene ALG-3. Science 271(5248):521–525

    Article  CAS  PubMed  Google Scholar 

  11. Shibata H, Yamada K, Mizuno T et al (2004) The penta-EF-hand protein ALG-2 interacts with a region containing PxY repeats in Alix/AIP1, which is required for the subcellular punctate distribution of the amino-terminal truncation form of Alix/AIP1. J Biochem 135(1):117–128

    Article  CAS  PubMed  Google Scholar 

  12. Jung YS, Kim KS, Kim KD, Lim JS, Kim JW, Kim E (2001) Apoptosis-linked gene 2 binds to the death domain of Fas and dissociates from Fas during Fas-mediated apoptosis in Jurkat cells. Biochem Biophys Res Commun 288(2):420–426

    Article  CAS  PubMed  Google Scholar 

  13. Jang IK, Hu R, Lacana E, D’Adamio L, Gu H (2002) Apoptosis-linked gene 2-deficient mice exhibit normal T-cell development and function. Mol Cell Biol 22(12):4094–4100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rao RV, Poksay KS, Castro-Obregon S et al (2004) Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem 279(1):177–187

    Article  CAS  PubMed  Google Scholar 

  15. Mahul-Mellier AL, Hemming FJ, Blot B, Fraboulet S, Sadoul R (2006) Alix, making a link between apoptosis-linked gene-2, the endosomal sorting complexes required for transport, and neuronal death in vivo. J Neuroscience: Off J Soc Neurosci 26(2):542–549

    Article  CAS  Google Scholar 

  16. Tarabykina S, Moller AL, Durussel I, Cox J, Berchtold MW (2000) Two forms of the apoptosis-linked protein ALG-2 with different Ca2+ affinities and target recognition. J Biol Chem 275(14):10514–10518

    Article  CAS  PubMed  Google Scholar 

  17. la Cour JM, Mollerup J, Winding P, Tarabykina S, Sehested M, Berchtold MW (2003) Up-regulation of ALG-2 in hepatomas and lung cancer tissue. Am J Pathol 163(1):81–89

    Article  PubMed Central  PubMed  Google Scholar 

  18. la Cour JM, Hoj BR, Mollerup J, Simon R, Sauter G, Berchtold MW (2008) The apoptosis linked gene ALG-2 is dysregulated in tumors of various origin and contributes to cancer cell viability. Mol Oncol 1(4):431–439

    Article  PubMed  Google Scholar 

  19. Yamada Y, Arao T, Gotoda T et al (2008) Identification of prognostic biomarkers in gastric cancer using endoscopic biopsy samples. Cancer Sci 99(11):2193–2199

    Article  CAS  PubMed  Google Scholar 

  20. Hoj BR, la Cour JM, Mollerup J, Berchtold MW (2009) ALG-2 knockdown in HeLa cells results in G2/M cell cycle phase accumulation and cell death. Biochem Biophys Res Commun 378(1):145–148

    Article  CAS  PubMed  Google Scholar 

  21. Yoon JH, Choi YJ, Kim SG, Nam SW, Lee JY, Park WS (2012) Programmed cell death 6 (PDCD6) as a prognostic marker for gastric cancers. Tumour Biol 33(2):485–494

    Article  CAS  PubMed  Google Scholar 

  22. Su D, Xu H, Feng J et al (2012) PDCD6 is an independent predictor of progression free survival in epithelial ovarian cancer. J Transl Med 10:31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ke X, Collins A, Ye S (2001) PIRA PCR designer for restriction analysis of single nucleotide polymorphisms. Bioinformatics 17(9):838–839

    Article  CAS  PubMed  Google Scholar 

  24. Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics 22(15):1928–1929

    Article  CAS  PubMed  Google Scholar 

  25. Maki M, Suzuki H, Shibata H (2011) Structure and function of ALG-2, a penta-EF-hand calcium-dependent adaptor protein. Sci China Life Sci 54(8):770–779

    Article  CAS  PubMed  Google Scholar 

  26. Subramanian L, Crabb JW, Cox J et al (2004) Ca2+ binding to EF hands 1 and 3 is essential for the interaction of apoptosis-linked gene-2 with Alix/AIP1 in ocular melanoma. Biochemistry 43(35):11175–11186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lo KW, Zhang Q, Li M, Zhang M (1999) Apoptosis-linked gene product ALG-2 is a new member of the calpain small subunit subfamily of Ca2+-binding proteins. Biochemistry 38(23):7498–7508

    Article  CAS  PubMed  Google Scholar 

  28. Maki M, Yamaguchi K, Kitaura Y, Satoh H, Hitomi K (1998) Calcium-induced exposure of a hydrophobic surface of mouse ALG-2, which is a member of the penta-EF-hand protein family. J Biochem 124(6):1170–1177

    Article  CAS  PubMed  Google Scholar 

  29. Missotten M, Nichols A, Rieger K, Sadoul R (1999) Alix, a novel mouse protein undergoing calcium-dependent interaction with the apoptosis-linked-gene 2 (ALG-2) protein. Cell Death Differ 6(2):124–129

    Article  CAS  PubMed  Google Scholar 

  30. Vito P, Pellegrini L, Guiet C, D’Adamio L (1999) Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J Biol Chem 274(3):1533–1540

    Article  CAS  PubMed  Google Scholar 

  31. Trioulier Y, Torch S, Blot B et al (2004) Alix, a protein regulating endosomal trafficking, is involved in neuronal death. J Biol Chem 279(3):2046–2052

    Article  CAS  PubMed  Google Scholar 

  32. Mahul-Mellier AL, Strappazzon F, Petiot A et al (2008) Alix and ALG-2 are involved in tumor necrosis factor receptor 1-induced cell death. J Biol Chem 283(50):34954–34965

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lee JH, Rho SB, Chun T (2005) Programmed cell death 6 (PDCD6) protein interacts with death-associated protein kinase 1 (DAPk1): additive effect on apoptosis via caspase-3 dependent pathway. Biotechnol Lett 27(14):1011–1015

    Article  CAS  PubMed  Google Scholar 

  34. Venables JP (2004) Aberrant and alternative splicing in cancer. Cancer Res 64(21):7647–7654

    Article  CAS  PubMed  Google Scholar 

  35. Montaville P, Dai Y, Cheung CY et al (2006) Nuclear translocation of the calcium-binding protein ALG-2 induced by the RNA-binding protein RBM22. Biochim Biophys Acta 1763(11):1335–1343

    Article  CAS  PubMed  Google Scholar 

  36. Lee KH, Kim E, Lee JS, Lee KS, Kim JW (2001) Mapping of the interaction sites between apoptosis linked gene ALG-2 and HEED. Mol Cells 12(3):298–303

    CAS  PubMed  Google Scholar 

  37. Aviel-Ronen S, Coe BP, Lau SK et al (2008) Genomic markers for malignant progression in pulmonary adenocarcinoma with bronchioloalveolar features. Proc Natl Acad Sci USA 105(29):10155–10160

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Ambatipudi S, Gerstung M, Gowda R et al (2011) Genomic profiling of advanced-stage oral cancers reveals chromosome 11q alterations as markers of poor clinical outcome. PLoS One 6(2):e17250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rho SB, Song YJ, Lim MC, Lee SH, Kim BR, Park SY (2012) Programmed cell death 6 (PDCD6) inhibits angiogenesis through PI3K/mTOR/p70S6K pathway by interacting of VEGFR-2. Cell Signal 24(1):131–139

    Article  CAS  PubMed  Google Scholar 

  40. Park SH, Lee JH, Lee GB et al (2012) PDCD6 additively cooperates with anti-cancer drugs through activation of NF-κB pathways. Cell Signal 24(3):726–733

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81172440, No. 81272821, No. 81172494 and No. 30901596); the Applied Basic Research Programs of Science and Technology Commission Foundation of Sichuan Province (No. 2013JY0008 and No. 2013JY0013); and Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT0935).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Zhang.

Additional information

Bin Zhou and Peng Bai have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Bai, P., Xue, H. et al. Single nucleotide polymorphisms in PDCD6 gene are associated with the development of cervical squamous cell carcinoma. Familial Cancer 14, 1–8 (2015). https://doi.org/10.1007/s10689-014-9767-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-014-9767-7

Keywords

Navigation