Skip to main content

Advertisement

Log in

A novel epigenetic mechanism regulating hyaluronan production in pancreatic cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is characterized by an abundant stroma enriched with hyaluronan (HA), a major component of extracellular matrix known to play a critical role in tumor progression. The mechanisms that regulate HA synthesis in PDAC are poorly understood. To investigate whether DNA methylation and HA production from PDAC cells are associated, we studied the effect of 5-aza-2′-deoxycitidine (5-aza-dC), an inhibitor of DNA methylation, or DNA methyltransferase 1 (DNMT1) knockdown by small interfering RNA, on the HA production from PDAC cells. HA production into the conditioned medium was evaluated in PDAC cells treated with 5-aza-dC or DNMT1 knockdown. mRNA expression of HA synthase (HAS) genes was investigated by real-time RT-PCR. Treatment of PDAC cells with 5-aza-dC led to a significant increase in the HA production (up to 2.5-fold increase) in all 4 cell lines tested. This enhanced HA production by 5-aza-dC treatment was accompanied by increased mRNA expression of HAS2 and HAS3. Furthermore, increased HA production and HAS2/HAS3 mRNA expression was also observed in PDAC cells by knockdown of DNMT1. These findings provide evidence, for the first time, that epigenetic mechanism is involved in the regulation of HA synthesis in PDAC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

PDAC:

Pancreatic ductal adenocarcinoma

ECM:

Extracellular matrix

HA:

Hyaluronan

MMP:

Matrix metalloproteinase

5-aza-dC:

5-aza-2′-deoxycytidine

DNMT1:

DNA methyltransferase 1

HAS:

HA synthase

HPDE:

Human pancreatic duct epithelial cell line

References

  1. Bardeesy N, DePinho RA (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer 2(12):897–909

    Article  CAS  PubMed  Google Scholar 

  2. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362(17):1605–1617

    Article  CAS  PubMed  Google Scholar 

  3. Vincent A et al (2011) Pancreatic cancer. Lancet 378(9791):607–620

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sato N, Goggins M (2006) The role of epigenetic alterations in pancreatic cancer. J Hepatobiliary Pancreat Surg 13(4):286–295

    Article  PubMed  Google Scholar 

  5. Mahadevan D, Von Hoff DD (2007) Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6(4):1186–1197

    Article  CAS  PubMed  Google Scholar 

  6. Erkan M et al (2010) Tumor microenvironment and progression of pancreatic cancer. Exp Oncol 32(3):128–131

    CAS  PubMed  Google Scholar 

  7. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528–539

    Article  CAS  PubMed  Google Scholar 

  8. Itano N, Zhuo L, Kimata K (2008) Impact of the hyaluronan-rich tumor microenvironment on cancer initiation and progression. Cancer Sci 99(9):1720–1725

    Article  CAS  PubMed  Google Scholar 

  9. Cheng XB et al (2013) Prognostic impact of hyaluronan and its regulators in pancreatic ductal adenocarcinoma. PLoS ONE 8(11):e80765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Provenzano PP et al (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 21(3):418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jacobetz MA et al (2012) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62(1):112–120

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sato N et al (2003) Effects of 5-aza-2′-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. J Natl Cancer Inst 95(4):327–330

    Article  CAS  PubMed  Google Scholar 

  13. Sato N et al (2003) SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22(32):5021–5030

    Article  CAS  PubMed  Google Scholar 

  14. Sato N et al (2006) Differential and epigenetic gene expression profiling identifies frequent disruption of the RELN pathway in pancreatic cancers. Gastroenterology 130(2):548–565

    Article  CAS  PubMed  Google Scholar 

  15. Sato N et al (2003) Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res 63(13):3735–3742

    CAS  PubMed  Google Scholar 

  16. Fries H et al (1994) Localisation of hyaluronate (HA) in primary tumors and nude mouse xenografts of human pancreatic carcinomas using a biotinylated HA-binding protein. Virchows Arch 424(1):7–12

    Article  CAS  PubMed  Google Scholar 

  17. Mahlbacher V et al (1992) Hyaluronan is a secretory product of human pancreatic adenocarcinoma cells. Eur J Cell Biol 58(1):28–34

    CAS  PubMed  Google Scholar 

  18. Theocharis AD et al (2000) Pancreatic carcinoma is characterized by elevated content of hyaluronan and chondroitin sulfate with altered disaccharide composition. Biochim Biophys Acta 1502(2):201–206

    Article  CAS  PubMed  Google Scholar 

  19. Kultti A et al (2014) Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment. Biomed Res Int 2014:817613

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chamberlain AA et al (2014) DNA methylation is developmentally regulated for genes essential for cardiogenesis. J Am Heart Assoc 3(3):e000976

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461

    Article  CAS  PubMed  Google Scholar 

  22. Issa JP, Kantarjian HM (2009) Targeting DNA methylation. Clin Cancer Res 15(12):3938–3946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamada T et al (1996) Induction of Ley antigen by 5-aza-2′-deoxycytidine in association with differentiation and apoptosis in human pancreatic cancer cells. Anticancer Res 16(2):735–740

    CAS  PubMed  Google Scholar 

  24. Shakya R et al (2013) Hypomethylating therapy in an aggressive stroma-rich model of pancreatic carcinoma. Cancer Res 73(2):885–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ateeq B et al (2008) Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 10(3):266–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Poplineau M et al (2013) The DNA hypomethylating agent, 5-aza-2′-deoxycytidine, enhances tumor cell invasion through a transcription-dependent modulation of MMP-1 expression in human fibrosarcoma cells. Mol Carcinog 54(1):24–34

    Article  PubMed  Google Scholar 

  27. Ricciardelli C et al (2013) Chemotherapy-induced hyaluronan production: a novel chemoresistance mechanism in ovarian cancer. BMC Cancer 13:476

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Ueda (Research Assistant, Department of Surgery1, University of Occupational and Environmental Health, Kitakyushu, JAPAN) for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohi, S., Sato, N., Cheng, XB. et al. A novel epigenetic mechanism regulating hyaluronan production in pancreatic cancer cells. Clin Exp Metastasis 33, 225–230 (2016). https://doi.org/10.1007/s10585-015-9771-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9771-9

Keywords

Navigation