Skip to main content

Advertisement

Log in

Co-evolution of breast-to-brain metastasis and neural progenitor cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Brain colonization by metastatic tumor cells offers a unique opportunity to investigate microenvironmental influences on the neoplastic process. The bi-directional interplay of breast cancer cells (mesodermal origin) and brain cells (neuroectodermal origin) is poorly understood and rarely investigated. In our patients undergoing neurosurgical resection of breast-to-brain metastases, specimens from the tumor/brain interface exhibited increased active gliosis as previously described. In addition, our histological characterization revealed infiltration of neural progenitor cells (NPCs) both outside and inside the tumor margin, leading us to investigate the cellular and molecular interactions between NPCs and metastases. Since signaling by the TGF-β superfamily is involved in both developmental neurobiology and breast cancer pathogenesis, we examined the role of these proteins in the context of brain metastases. The brain-metastatic breast cancer cell line MDA-MB-231Br (231Br) expressed BMP-2 at significantly higher levels compared to its matched primary breast cancer cell line MDA-MB-231 (231). Co-culturing was used to examine bi-directional cellular effects and the relevance of BMP-2 overexpression. When co-cultured with NPCs, 231 (primary) tumor cells failed to proliferate over 15 days. However, 231Br (brain metastatic) tumor cells co-cultured with NPCs escaped growth inhibition after day 5 and proliferated, occurring in parallel with NPC differentiation into astrocytes. Using shRNA and gene knock-in, we then demonstrated BMP-2 secreted by 231Br cells mediated NPC differentiation into astrocytes and concomitant tumor cell proliferation in vitro. In xenografts, overexpression of BMP-2 in primary breast cancer cells significantly enhanced their ability to engraft and colonize the brain, thereby creating a metastatic phenotype. Conversely, BMP-2 knockdown in metastatic breast cancer cells significantly diminished engraftment and colonization. The results suggest metastatic tumor cells create a permissive neural niche by steering NPC differentiation toward astrocytes through paracrine BMP-2 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Neman J, Somlo G, Jandial R (2010) Classification of genomic changes in breast cancer brain metastasis. Neurosurgery 67:N18–N19

    Article  PubMed  Google Scholar 

  2. Cheng X, Hung MC (2007) Breast cancer brain metastases. Cancer Metastasis Rev 26:635–643

    Article  PubMed  Google Scholar 

  3. Deeken JF, Loscher W (2007) The blood–brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    Article  PubMed  CAS  Google Scholar 

  4. Lin Q, Balasubramanian K, Fan D, Kim SJ, Guo L, Wang H et al (2010) Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia 12:748–754

    PubMed  CAS  Google Scholar 

  5. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  6. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  PubMed  CAS  Google Scholar 

  7. Shuangshoti S, Thorner PS, Ruangvejvorachai P, Saha B, Groshen S, Taylor CR et al (2009) J1-31 protein expression in astrocytes and astrocytomas. Neuropathology 29:521–527

    Article  PubMed  Google Scholar 

  8. Kim SJ, Kim JS, Park ES, Lee JS, Lin Q, Langley RR et al (2011) Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 13:286–298

    PubMed  CAS  Google Scholar 

  9. Kokorina NA, Zakharkin SO, Krebsbach PH, Nussenbaum B (2011) Treatment effects of rhBMP-2 on invasiveness of oral carcinoma cell lines. Laryngoscope 121:1876–1880

    PubMed  CAS  Google Scholar 

  10. Hsu YL, Huang MS, Yang CJ, Hung JY, Wu LY, Kuo PL (2011) Lung tumor-associated osteoblast-derived bone morphogenetic protein-2 increased epithelial-to-mesenchymal transition of cancer by Runx2/Snail signaling pathway. J Biol Chem 286:37335–37346

    Article  PubMed  CAS  Google Scholar 

  11. Kang MH, Oh SC, Lee HJ, Kang HN, Kim JL, Kim JS et al (2011) Metastatic function of BMP-2 in gastric cancer cells: the role of PI3K/AKT, MAPK, the NF-kappaB pathway, and MMP-9 expression. Exp Cell Res 317:1746–1762

    Article  PubMed  CAS  Google Scholar 

  12. Kwon H, Kim HJ, Rice WL, Subramanian B, Park SH, Georgakoudi I et al (2010) Development of an in vitro model to study the impact of BMP-2 on metastasis to bone. J Tissue Eng Regen Med 4:590–599

    Article  PubMed  CAS  Google Scholar 

  13. Davies SR, Watkins G, Douglas-Jones A, Mansel RE, Jiang WG (2008) Bone morphogenetic proteins 1 to 7 in human breast cancer, expression pattern and clinical/prognostic relevance. J Exp Ther Oncol 7:327–338

    PubMed  CAS  Google Scholar 

  14. Katsuno Y, Hanyu A, Kanda H, Ishikawa Y, Akiyama F, Iwase T et al (2008) Bone morphogenetic protein signaling enhances invasion and bone metastasis of breast cancer cells through Smad pathway. Oncogene 27:6322–6333

    Article  PubMed  CAS  Google Scholar 

  15. Pouliot F, Blais A, Labrie C (2003) Overexpression of a dominant negative type II bone morphogenetic protein receptor inhibits the growth of human breast cancer cells. Cancer Res 63:277–281

    PubMed  CAS  Google Scholar 

  16. Waite KA, Eng C (2003) BMP2 exposure results in decreased PTEN protein degradation and increased PTEN levels. Hum Mol Genet 12:679–684

    Article  PubMed  CAS  Google Scholar 

  17. Clement JH, Raida M, Sanger J, Bicknell R, Liu J, Naumann A et al (2005) Bone morphogenetic protein 2 (BMP-2) induces in vitro invasion and in vivo hormone independent growth of breast carcinoma cells. Int J Oncol 27:401–407

    PubMed  CAS  Google Scholar 

  18. Le Dreau G, Garcia-Campmany L, Rabadan MA, Ferronha T, Tozer S, Briscoe J et al (2012) Canonical BMP7 activity is required for the generation of discrete neuronal populations in the dorsal spinal cord. Development 139:259–268

    Article  PubMed  Google Scholar 

  19. Aigner L, Bogdahn U (2008) TGF-beta in neural stem cells and in tumors of the central nervous system. Cell Tissue Res 331:225–241

    Article  PubMed  Google Scholar 

  20. Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, Nakafuku M et al (2001) BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98:5868–5873

    Article  PubMed  CAS  Google Scholar 

  21. Busch C, Oppitz M, Sailer MH, Just L, Metzger M, Drews U (2006) BMP-2-dependent integration of adult mouse subventricular stem cells into the neural crest of chick and quail embryos. J Cell Sci 119:4467–4474

    Article  PubMed  CAS  Google Scholar 

  22. Gross RE, Mehler MF, Mabie PC, Zang Z, Santschi L, Kessler JA (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17:595–606

    Article  PubMed  CAS  Google Scholar 

  23. Neman J, de Vellis J (2012) A method for deriving homogenous population of oligodendrocytes from mouse embryonic stem cells. Dev Neurobiol 72:777–788

    Article  PubMed  CAS  Google Scholar 

  24. Fitzgerald DP, Palmieri D, Hua E, Hargrave E, Herring JM, Qian Y et al (2008) Reactive glia are recruited by highly proliferative brain metastases of breast cancer and promote tumor cell colonization. Clin Exp Metastasis 25:799–810

    Article  PubMed  Google Scholar 

  25. Ahmed AI, Shtaya AB, Zaben MJ, Owens EV, Kiecker C, Gray WP (2012) Endogenous GFAP-positive neural stem/progenitor cells in the postnatal mouse cortex are activated following traumatic brain injury. J Neurotrauma 29:828–842

    Article  PubMed  Google Scholar 

  26. Martens DJ, Seaberg RM, van der Kooy D (2002) In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord. Eur J Neurosci 16:1045–1057

    Article  PubMed  Google Scholar 

  27. Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K et al (2010) Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7:470–482

    Article  PubMed  CAS  Google Scholar 

  28. Ellis P, Fagan BM, Magness ST, Hutton S, Taranova O, Hayashi S et al (2004) SOX2, a persistent marker for multipotential neural stem cells derived from embryonic stem cells, the embryo or the adult. Dev Neurosci 26:148–165

    Article  PubMed  CAS  Google Scholar 

  29. Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K et al (2012) Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 31:1354–1365

    Article  PubMed  CAS  Google Scholar 

  30. Stolt CC, Lommes P, Sock E, Chaboissier MC, Schedl A, Wegner M (2003) The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev 17:1677–1689

    Article  PubMed  CAS  Google Scholar 

  31. Endo Y, Deonauth K, Prahalad P, Hoxter B, Zhu Y, Byers SW (2008) Role of Sox-9, ER81 and VE-cadherin in retinoic acid-mediated trans-differentiation of breast cancer cells. PLoS One 3:e2714

    Article  PubMed  Google Scholar 

  32. Chakravarty G, Moroz K, Makridakis NM, Lloyd SA, Galvez SE, Canavello PR et al (2011) Prognostic significance of cytoplasmic SOX9 in invasive ductal carcinoma and metastatic breast cancer. Exp Biol Med (Maywood) 236:145–155

    Article  CAS  Google Scholar 

  33. Namba T, Mochizuki H, Onodera M, Mizuno Y, Namiki H, Seki T (2005) The fate of neural progenitor cells expressing astrocytic and radial glial markers in the postnatal rat dentate gyrus. Eur J Neurosci 22:1928–1941

    Article  PubMed  Google Scholar 

  34. Cai N, Kurachi M, Shibasaki K, Okano-Uchida T, Ishizaki Y (2012) CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum. Cerebellum 11:181–193

    Article  PubMed  CAS  Google Scholar 

  35. Raida M, Clement JH, Ameri K, Han C, Leek RD, Harris AL (2005) Expression of bone morphogenetic protein 2 in breast cancer cells inhibits hypoxic cell death. Int J Oncol 26:1465–1470

    PubMed  CAS  Google Scholar 

  36. Bobinac D, Maric I, Zoricic S, Spanjol J, Dordevic G, Mustac E et al (2005) Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer. Croat Med J 46:389–396

    PubMed  Google Scholar 

  37. Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M (2007) Vimentin and epithelial–mesenchymal transition in human breast cancer—observations in vitro and in vivo. Cells Tissues Organs 185:191–203

    Article  PubMed  CAS  Google Scholar 

  38. Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR et al (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77

    Article  PubMed  CAS  Google Scholar 

  39. Yanagisawa M, Takizawa T, Ochiai W, Uemura A, Nakashima K, Taga T (2001) Fate alteration of neuroepithelial cells from neurogenesis to astrocytogenesis by bone morphogenetic proteins. Neurosci Res 41:391–396

    Article  PubMed  CAS  Google Scholar 

  40. Pascal LE, True LD, Campbell DS, Deutsch EW, Risk M, Coleman IM et al (2008) Correlation of mRNA and protein levels: cell type-specific gene expression of cluster designation antigens in the prostate. BMC Genomics 9:246

    Article  PubMed  Google Scholar 

  41. Guo Y, Xiao P, Lei S, Deng F, Xiao GG, Liu Y et al (2008) How is mRNA expression predictive for protein expression? A correlation study on human circulating monocytes. Acta Biochim Biophys Sin (Shanghai) 40:426–436

    Article  CAS  Google Scholar 

  42. Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117

    Article  PubMed  Google Scholar 

  43. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28:713–726

    Article  PubMed  CAS  Google Scholar 

  44. White RE, McTigue DM, Jakeman LB (2010) Regional heterogeneity in astrocyte responses following contusive spinal cord injury in mice. J Comp Neurol 518:1370–1390

    PubMed  Google Scholar 

  45. Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal ischemic and traumatic brain injury. Neurobiol Dis 37:267–274

    Article  PubMed  Google Scholar 

  46. Christophidis LJ, Gorba T, Gustavsson M, Williams CE, Werther GA, Russo VC et al (2009) Growth hormone receptor immunoreactivity is increased in the subventricular zone of juvenile rat brain after focal ischemia: a potential role for growth hormone in injury-induced neurogenesis. Growth Horm IGF Res 19:497–506

    Article  PubMed  CAS  Google Scholar 

  47. Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  PubMed  CAS  Google Scholar 

  48. Muraoka RS, Koh Y, Roebuck LR, Sanders ME, Brantley-Sieders D, Gorska AE et al (2003) Increased malignancy of Neu-induced mammary tumors overexpressing active transforming growth factor beta1. Mol Cell Biol 23:8691–8703

    Article  PubMed  CAS  Google Scholar 

  49. Ueda Y, Wang S, Dumont N, Yi JY, Koh Y, Arteaga CL (2004) Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. J Biol Chem 279:24505–24513

    Article  PubMed  CAS  Google Scholar 

  50. Janda E, Lehmann K, Killisch I, Jechlinger M, Herzig M, Downward J et al (2002) Ras and TGF[beta] cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 156:299–313

    Article  PubMed  CAS  Google Scholar 

  51. Wang SE, Xiang B, Guix M, Olivares MG, Parker J, Chung CH et al (2008) Transforming growth factor beta engages TACE and ErbB3 to activate phosphatidylinositol-3 kinase/Akt in ErbB2-overexpressing breast cancer and desensitizes cells to trastuzumab. Mol Cell Biol 28:5605–5620

    Article  PubMed  CAS  Google Scholar 

  52. Seton-Rogers SE, Lu Y, Hines LM, Koundinya M, LaBaer J, Muthuswamy SK et al (2004) Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci USA 101:1257–1262

    Article  PubMed  CAS  Google Scholar 

  53. Yue J, Mulder KM (2000) Requirement of Ras/MAPK pathway activation by transforming growth factor beta for transforming growth factor beta 1 production in a smad-dependent pathway. J Biol Chem 275:35656

    PubMed  CAS  Google Scholar 

  54. Oft M, Peli J, Rudaz C, Schwarz H, Beug H, Reichmann E (1996) TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 10:2462–2477

    Article  PubMed  CAS  Google Scholar 

  55. Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M et al (2000) Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14:2610–2622

    Article  PubMed  CAS  Google Scholar 

  56. Feeley BT, Krenek L, Liu N, Hsu WK, Gamradt SC, Schwarz EM et al (2006) Overexpression of noggin inhibits BMP-mediated growth of osteolytic prostate cancer lesions. Bone 38:154–166

    Article  PubMed  CAS  Google Scholar 

  57. Gordon KJ, Kirkbride KC, How T, Blobe GC (2009) Bone morphogenetic proteins induce pancreatic cancer cell invasiveness through a Smad1-dependent mechanism that involves matrix metalloproteinase-2. Carcinogenesis 30:238–248

    Article  PubMed  CAS  Google Scholar 

  58. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68

    Article  PubMed  Google Scholar 

  59. Tate CM, Pallini R, Ricci-Vitiani L, Dowless M, Shiyanova T, D’Alessandris GQ et al (2012) A BMP7 variant inhibits the tumorigenic potential of glioblastoma stem-like cells. Cell Death Differ 19:1644–1654

    Article  PubMed  CAS  Google Scholar 

  60. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765

    Article  PubMed  CAS  Google Scholar 

  61. Zhang M, Kleber S, Rohrich M, Timke C, Han N, Tuettenberg J et al (2011) Blockade of TGF-beta signaling by the TGFbetaR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Cancer Res 71:7155–7167

    Article  PubMed  CAS  Google Scholar 

  62. Hsi LC, Kundu S, Palomo J, Xu B, Ficco R, Vogelbaum MA et al (2011) Silencing IL-13Ralpha2 promotes glioblastoma cell death via endogenous signaling. Mol Cancer Ther 10:1149–1160

    Article  PubMed  CAS  Google Scholar 

  63. Rahaman SO, Vogelbaum MA, Haque SJ (2005) Aberrant Stat3 signaling by interleukin-4 in malignant glioma cells: involvement of IL-13Ralpha2. Cancer Res 65:2956–2963

    Article  PubMed  CAS  Google Scholar 

  64. Nguyen VH, Schmid B, Trout J, Connors SA, Ekker M, Mullins MC (1998) Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. Dev Biol 199:93–110

    Article  PubMed  CAS  Google Scholar 

  65. Schumacher JA, Hashiguchi M, Nguyen VH, Mullins MC (2011) An intermediate level of BMP signaling directly specifies cranial neural crest progenitor cells in zebrafish. PLoS One 6:e27403

    Article  PubMed  CAS  Google Scholar 

  66. Kohyama J, Sanosaka T, Tokunaga A, Takatsuka E, Tsujimura K, Okano H et al (2010) BMP-induced REST regulates the establishment and maintenance of astrocytic identity. J Cell Biol 189:159–170

    Article  PubMed  CAS  Google Scholar 

  67. Prada I, Marchaland J, Podini P, Magrassi L, D’Alessandro R, Bezzi P et al (2011) REST/NRSF governs the expression of dense-core vesicle gliosecretion in astrocytes. J Cell Biol 193:537–549

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Margaret Morgan for her comments and careful editing of this manuscript. Rahul Jandial is supported by National Institutes of Health (NIH) Grant 2K12CA001727-16A1. Josh Neman is supported by California Institute for Regenerative Medicine (CIRM) Grant TG2-01150. Additional project support was provided by National Cancer Institute Grant (NCI) P30 CA033572.

Conflict of interest

The authors declare no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Jandial.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10585_2013_9576_MOESM1_ESM.tiff

Supplementary material 1: Figure 1. (A, B) Immunocytochemistry and Real-time RT PCR of the lineage progression of human NPCs into astrocytes following exogenous BMP-2 treatment over 15 days in vitro. Data are represented as mean values ± standard error of the mean (n = 3) (TIFF 20745 kb)

10585_2013_9576_MOESM2_ESM.tiff

Supplementary material 2: Figure 2. Validation of BMP-2 knockdown (231BrKD), overexpression (231 KI), and shRNA control (231Br NT) in breast cancer cells. (A) Real time RT-PCR for BMP-2 mRNA expression. (B) Western blot analysis of BMP-2, BMP-4, TGF-β3, and SMAD1/5/8. (C) BMP-2 and BMP-4 ELISA. (D) Immunofluorescence of ZsGreen+ 231Br NT, 231BrKD, and 231KI stained for BMP-2 (red), BMP-4 (white), nuclear DAPI (blue). (E) 231BrNT have similar NPC differentiation capacity and (F) corresponding proliferative advantage as 231Br. Data are represented as mean values ± standard error of the mean (n = 3). Statistical significance was assessed using Student’s t test or 1-way ANOVA with Bonferroni’s multiple comparison test (p value: *p < 0.05, **p < 0.01, and ***p < 0.001; 95 % Confidence interval of difference) (TIFF 24465 kb)

Supplementary material 3 (TIFF 4438 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neman, J., Choy, C., Kowolik, C.M. et al. Co-evolution of breast-to-brain metastasis and neural progenitor cells. Clin Exp Metastasis 30, 753–768 (2013). https://doi.org/10.1007/s10585-013-9576-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9576-7

Keywords

Navigation