Skip to main content

Advertisement

Log in

The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

MTA (metastasis-associated gene) is a newly discovered family of cancer progression-related genes and their encoded products. MTA1, the first gene found in this family, has been repeatedly reported to be overexpressed along with its protein product MTA1 in a wide range of human cancers. In addition, the expression of MTA1/MTA1 correlates with the clinicopathological properties (malignant properties) of human cancers. MTA proteins are transcriptional co-repressors that function in histone deacetylation and are involved in the NuRD complex, which contains nucleosome remodeling and histone deacetylating molecules. MTA1 expression correlates with tumor formation in the mammary gland. In addition, MTA1 converts breast cancer cells to a more aggressive phenotype by repression of the estrogen receptor (ER) α trans-activation function through deacetylation of the chromatin in the ER-responsive element of ER-responsive genes. Furthermore, MTA1 plays an essential role in c-MYC-mediated cell transformation. Another member of this family, MTA3, is induced by estrogen and represses the expression of the transcriptional repressor Snail, a master regulator of “epithelial to mesenchymal transitions”, resulting in the expression of the cell adhesion molecule E-cadherin and maintenance of a differentiated, normal epithelial phenotype in breast cells. In addition, tumor suppressor p53 protein is deacetylated and inactivated by both MTA1 and MTA2, leading to inhibition of growth arrest and apoptosis. Moreover, a hypoxia-inducible factor-1α (HIF-1α) is also deacetylated and stabilized by MTA1, resulting in angiogenesis. Thus, MTA proteins, especially MTA1, represent a possible set of master co-regulatory molecules involved in the carcinogenesis and progression of various malignant tumors. MTA proteins are proposed to be important new tools for clinical application in cancer diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MTA:

Metastasis-associated gene/protein

HDAC:

Histone deacetylase

NuRD:

Nucleosome remodeling and histone deacetylation

ER:

Estrogen receptor

HIF:

Hypoxia-inducible factor

References

  1. Toh Y, Pencil SD, Nicolson GL (1994) A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J Biol Chem 269:22958–22963

    PubMed  CAS  Google Scholar 

  2. Toh Y, Pencil SD, Nicolson GL (1995) Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene 159:97–104. doi:10.1016/0378-1119(94)00410-T

    Article  PubMed  CAS  Google Scholar 

  3. Nawa A, Nishimori K, Lin P et al (2000) Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. J Cell Biochem 79:202–212. doi:10.1002/1097-4644(20001101)79:2<202::AID-JCB40>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  4. Toh Y, Oki E, Oda S et al (1997) Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. Int J Cancer 74:459–463. doi:10.1002/(SICI)1097-0215(19970822)74:4<459::AID-IJC18>3.0.CO;2-4

    Article  PubMed  CAS  Google Scholar 

  5. Toh Y, Kuwano H, Mori M et al (1999) Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. Br J Cancer 79:1723–1726. doi:10.1038/sj.bjc.6690274

    Article  PubMed  CAS  Google Scholar 

  6. Kumar R, Wang RA, Bagheri-Yarmand R (2003) Emerging roles of MTA family members in human cancers. Semin Oncol 30:30–37. doi:10.1053/j.seminoncol.2003.08.005

    Article  PubMed  CAS  Google Scholar 

  7. Manavathi B, Kumar R (2007) Metastasis tumor antigens, an emerging family of multifaceted master coregulators. J Biol Chem 282:1529–1533. doi:10.1074/jbc.R600029200

    Article  PubMed  CAS  Google Scholar 

  8. Manavathi B, Singh K, Kumar R (2007) MTA family of coregulators in nuclear receptor biology and pathology. Nucl Recept Signal 5:e010

    PubMed  Google Scholar 

  9. Bowen NJ, Fujita N, Kajita M, Wade PA (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677:52–57

    PubMed  CAS  Google Scholar 

  10. Singh RR, Kumar R (2007) MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. J Mammary Gland Biol Neoplasia 12:115–125. doi:10.1007/s10911-007-9043-7

    Article  PubMed  Google Scholar 

  11. Solari F, Bateman A, Ahringer J (1999) The Caenorhabditis elegans genes egl-27 and egr-1 are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development 126:2483–2494

    PubMed  CAS  Google Scholar 

  12. Moon WS, Chang K, Tarnawski AS (2004) Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: relationship to vascular invasion and estrogen receptor-alpha. Hum Pathol 35:424–429. doi:10.1016/j.humpath.2003.11.007

    Article  PubMed  CAS  Google Scholar 

  13. Bagheri-Yarmand R, Balasenthil S, Gururaj AE et al (2007) Metastasis-associated protein 1 transgenic mice: a new model of spontaneous B-cell lymphomas. Cancer Res 67:7062–7067. doi:10.1158/0008-5472.CAN-07-0748

    Article  PubMed  CAS  Google Scholar 

  14. Balasenthil S, Broaddus RR, Kumar R (2006) Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. Hum Pathol 37:656–661. doi:10.1016/j.humpath.2006.01.024

    Article  PubMed  CAS  Google Scholar 

  15. Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA (2003) MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113:207–219. doi:10.1016/S0092-8674(03)00234-4

    Article  PubMed  CAS  Google Scholar 

  16. Kumar R, Wang RA, Mazumdar A et al (2002) A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature 418:654–657. doi:10.1038/nature00889

    Article  PubMed  CAS  Google Scholar 

  17. Martin MD, Fischbach K, Osborne CK, Mohsin SK, Allred DC, O’Connell P (2001) Loss of heterozygosity events impeding breast cancer metastasis contains the MTA1 gene. Cancer Res 61:3578–3580

    PubMed  CAS  Google Scholar 

  18. Martin MD, Hilsenbeck SG, Mohsin SK et al (2006) Breast tumors that overexpress nuclear metastasis-associated 1 (MTA1) protein have high recurrence risks but enhanced responses to systemic therapies. Breast Cancer Res Treat 95:7–12. doi:10.1007/s10549-005-9016-8

    Article  PubMed  CAS  Google Scholar 

  19. Jang KS, Paik SS, Chung H, Oh YH, Kong G (2006) MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Sci 97:374–379. doi:10.1111/j.1349-7006.2006.00186.x

    Article  PubMed  CAS  Google Scholar 

  20. Giannini R, Cavallini A (2005) Expression analysis of a subset of coregulators and three nuclear receptors in human colorectal carcinoma. Anticancer Res 25:4287–4292

    PubMed  CAS  Google Scholar 

  21. Toh Y, Ohga T, Endo K et al (2004) Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int J Cancer 110:362–367. doi:10.1002/ijc.20154

    Article  PubMed  CAS  Google Scholar 

  22. Kidd M, Modlin IM, Mane SM, Camp RL, Eick G, Latich I (2006) The role of genetic markers–NAP1L1, MAGE-D2, and MTA1–in defining small-intestinal carcinoid neoplasia. Ann Surg Oncol 13:253–262. doi:10.1245/ASO.2006.12.011

    Article  PubMed  Google Scholar 

  23. Modlin IM, Kidd M, Pfragner R, Eick GN, Champaneria MC (2006) The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 91:2340–2348. doi:10.1210/jc.2006-0110

    Article  PubMed  CAS  Google Scholar 

  24. Kidd M, Modlin IM, Pfragner R et al (2007) Small bowel carcinoid (enterochromaffin cell) neoplasia exhibits transforming growth factor-beta1-mediated regulatory abnormalities including up-regulation of C-Myc and MTA1. Cancer 109(12):2420–2431. doi:10.1002/cncr.22725

    Article  PubMed  CAS  Google Scholar 

  25. Kidd M, Modlin IM, Mane SM et al (2006) Utility of molecular genetic signatures in the delineation of gastric neoplasia. Cancer 106:1480–1488. doi:10.1002/cncr.21758

    Article  PubMed  CAS  Google Scholar 

  26. Modlin IM, Kidd M, Latich I et al (2006) Genetic differentiation of appendiceal tumor malignancy: a guide for the perplexed. Ann Surg 244:52–60. doi:10.1097/01.sla.0000217617.06782.d5

    Article  PubMed  Google Scholar 

  27. Iguchi H, Imura G, Toh Y, Ogata Y (2000) Expression of MTA1, a metastasis-associated gene with histone deacetylase activity in pancreatic cancer. Int J Oncol 16:1211–1214

    PubMed  CAS  Google Scholar 

  28. Miyake K, Yoshizumi T, Imura S et al (2008) Expression of hypoxia-inducible factor-1alpha, histone deacetylase 1, and metastasis-associated protein 1 in pancreatic carcinoma: correlation with poor prognosis with possible regulation. Pancreas 36:e1–e9. doi:10.1097/MPA.0b013e3181675010

    Article  PubMed  CAS  Google Scholar 

  29. Hamatsu T, Rikimaru T, Yamashita Y et al (2003) The role of MTA1 gene expression in human hepatocellular carcinoma. Oncol Rep 10:599–604

    PubMed  CAS  Google Scholar 

  30. Ryu SH, Chung YH, Lee H et al (2008) Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology 47:929–936. doi:10.1002/hep.22124

    Article  PubMed  Google Scholar 

  31. Sasaki H, Moriyama S, Nakashima Y et al (2002) Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer 35:149–154. doi:10.1016/S0169-5002(01)00329-4

    Article  PubMed  Google Scholar 

  32. Yi S, Guangqi H, Guoli H (2003) The association of the expression of MTA1, nm23H1 with the invasion, metastasis of ovarian carcinoma. Chin Med Sci J 18:87–92

    PubMed  Google Scholar 

  33. Sasaki H, Yukiue H, Kobayashi Y et al (2001) Expression of the MTA1 mRNA in thymoma patients. Cancer Lett 174:159–163. doi:10.1016/S0304-3835(01)00704-2

    Article  PubMed  CAS  Google Scholar 

  34. Dannenmann C, Shabani N, Friese K, Jeschke U, Mylonas I, Bruning A (2008) The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biol Ther 7:1460–1467

    PubMed  CAS  Google Scholar 

  35. Hofer MD, Kuefer R, Varambally S et al (2004) The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Res 64:825–829. doi:10.1158/0008-5472.CAN-03-2755

    Article  PubMed  CAS  Google Scholar 

  36. Hofer MD, Tapia C, Browne TJ, Mirlacher M, Sauter G, Rubin MA (2006) Comprehensive analysis of the expression of the metastasis-associated gene 1 in human neoplastic tissue. Arch Pathol Lab Med 130:989–996

    PubMed  CAS  Google Scholar 

  37. Roepman P, de Jager A, Groot Koerkamp MJ, Kummer JA, Slootweg PJ, Holstege FC (2006) Maintenance of head and neck tumor gene expression profiles upon lymph node metastasis. Cancer Res 66:11110–11114. doi:10.1158/0008-5472.CAN-06-3161

    Article  PubMed  CAS  Google Scholar 

  38. Kawasaki G, Yanamoto S, Yoshitomi I, Yamada S, Mizuno A (2008) Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. Int J Oral Maxillofac Surg 37:1039–1046. doi:10.1016/j.ijom.2008.05.020

    Article  PubMed  CAS  Google Scholar 

  39. Mazumdar A, Wang RA, Mishra SK et al (2001) Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol 3:30–37. doi:10.1038/35050532

    Article  PubMed  CAS  Google Scholar 

  40. Bagheri-Yarmand R, Talukder AH, Wang RA, Vadlamudi RK, Kumar R (2004) Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis. Development 131:3469–3479. doi:10.1242/dev.01213

    Article  PubMed  CAS  Google Scholar 

  41. Balasenthil S, Gururaj AE, Talukder AH et al (2007) Identification of Pax5 as a target of MTA1 in B-cell lymphomas. Cancer Res 67:7132–7138. doi:10.1158/0008-5472.CAN-07-0750

    Article  PubMed  CAS  Google Scholar 

  42. Mahoney MG, Simpson A, Jost M et al (2002) Metastasis-associated protein (MTA)1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene 21:2161–2170. doi:10.1038/sj.onc.1205277

    Article  PubMed  CAS  Google Scholar 

  43. Qian H, Lu N, Xue L et al (2005) Reduced MTA1 expression by RNAi inhibits in vitro invasion and migration of esophageal squamous cell carcinoma cell line. Clin Exp Metastasis 22:653–662. doi:10.1007/s10585-006-9005-2

    Article  PubMed  CAS  Google Scholar 

  44. Hofer MD, Menke A, Genze F, Gierschik P, Giehl K (2004) Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br J Cancer 90:455–462. doi:10.1038/sj.bjc.6601535

    Article  PubMed  CAS  Google Scholar 

  45. Tong JK, Hassig CA, Schnitzler GR, Kingston RE, Schreiber SL (1998) Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921. doi:10.1038/27699

    Article  PubMed  CAS  Google Scholar 

  46. Xue Y, Wong J, Moreno GT, Young MK, Cote J, Wang W (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2:851–861. doi:10.1016/S1097-2765(00)80299-3

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935. doi:10.1101/gad.13.15.1924

    Article  PubMed  CAS  Google Scholar 

  48. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23:62–66

    PubMed  CAS  Google Scholar 

  49. Toh Y, Kuninaka S, Endo K et al (2000) Molecular analysis of a candidate metastasis-associated gene, MTA1: possible interaction with histone deacetylase 1. J Exp Clin Cancer Res 19:105–111

    PubMed  CAS  Google Scholar 

  50. Fearon ER (2003) Connecting estrogen receptor function, transcriptional repression, and E-cadherin expression in breast cancer. Cancer Cell 3:307–310. doi:10.1016/S1535-6108(03)00087-4

    Article  PubMed  CAS  Google Scholar 

  51. Tang CK, Perez C, Grunt T, Waibel C, Cho C, Lupu R (1996) Involvement of heregulin-beta2 in the acquisition of the hormone-independent phenotype of breast cancer cells. Cancer Res 56:3350–3358

    PubMed  CAS  Google Scholar 

  52. Cui Y, Niu A, Pestell R et al (2006) Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Mol Endocrinol 20:2020–2235. doi:10.1210/me.2005-0063

    Article  PubMed  CAS  Google Scholar 

  53. Khaleque MA, Bharti A, Gong J et al (2008) Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene 27:1886–1893. doi:10.1038/sj.onc.1210834

    Article  PubMed  CAS  Google Scholar 

  54. Talukder AH, Mishra SK, Mandal M et al (2003) MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. J Biol Chem 278:11676–11685. doi:10.1074/jbc.M209570200

    Article  PubMed  CAS  Google Scholar 

  55. Mishra SK, Mazumdar A, Vadlamudi RK et al (2003) MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. J Biol Chem 278:19209–19219. doi:10.1074/jbc.M301968200

    Article  PubMed  CAS  Google Scholar 

  56. Talukder AH, Gururaj A, Mishra SK, Vadlamudi RK, Kumar R (2004) Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator. Mol Cell Biol 24:6581–6591. doi:10.1128/MCB.24.15.6581-6591.2004

    Article  PubMed  CAS  Google Scholar 

  57. Singh RR, Barnes CJ, Talukder AH, Fuqua SA, Kumar R (2005) Negative regulation of estrogen receptor alpha transactivation functions by LIM domain only 4 protein. Cancer Res 65:10594–10601. doi:10.1158/0008-5472.CAN-05-2268

    Article  PubMed  CAS  Google Scholar 

  58. Mishra SK, Yang Z, Mazumdar A, Talukder AH, Larose L, Kumar R (2004) Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene 23:4422–4429. doi:10.1038/sj.onc.1207569

    Article  PubMed  CAS  Google Scholar 

  59. Mishra SK, Talukder AH, Gururaj AE et al (2004) Upstream determinants of estrogen receptor-alpha regulation of metastatic tumor antigen 3 pathway. J Biol Chem 279:32709–32715. doi:10.1074/jbc.M402942200

    Article  PubMed  CAS  Google Scholar 

  60. Fujita N, Kajita M, Taysavang P, Wade PA (2004) Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Mol Endocrinol 18:2937–2949. doi:10.1210/me.2004-0258

    Article  PubMed  CAS  Google Scholar 

  61. Zhang H, Singh RR, Talukder AH, Kumar R (2006) Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway. Genes Dev 20:2943–2948. doi:10.1101/gad.1461706

    Article  PubMed  CAS  Google Scholar 

  62. Gururaj AE, Singh RR, Rayala SK et al (2006) MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proc Natl Acad Sci USA 103:6670–6675. doi:10.1073/pnas.0601989103

    Article  PubMed  CAS  Google Scholar 

  63. Gururaj AE, Holm C, Landberg G, Kumar R (2006) Breast cancer-amplified sequence 3, a target of metastasis-associated protein 1, contributes to tamoxifen resistance in premenopausal patients with breast cancer. Cell Cycle 5:1407–1410

    PubMed  CAS  Google Scholar 

  64. Matsusue K, Takiguchi S, Toh Y, Kono A (2001) Characterization of mouse metastasis-associated gene 2: genomic structure, nuclear localization signal, and alternative potentials as transcriptional activator and repressor. DNA Cell Biol 20:603–611. doi:10.1089/104454901753340596

    Article  PubMed  CAS  Google Scholar 

  65. Luo J, Su F, Chen D, Shiloh A, Gu W (2000) Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature 408:377–381. doi:10.1038/35042612

    Article  PubMed  CAS  Google Scholar 

  66. Moon HE, Cheon H, Lee MS (2007) Metastasis-associated protein 1 inhibits p53-induced apoptosis. Oncol Rep 18:1311–1314

    PubMed  CAS  Google Scholar 

  67. Yoo YG, Kong G, Lee MO (2006) Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J 25:1231–1241. doi:10.1038/sj.emboj.7601025

    Article  PubMed  CAS  Google Scholar 

  68. Moon HE, Cheon H, Chun KH et al (2006) Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncol Rep 16:929–935

    PubMed  CAS  Google Scholar 

  69. Yoo YG, Na TY, Seo HW et al (2008) Hepatitis B virus X protein induces the expression of MTA1 and HDAC1, which enhances hypoxia signaling in hepatocellular carcinoma cells. Oncogene 27:3405–3413. doi:10.1038/sj.onc.1211000

    Article  PubMed  CAS  Google Scholar 

  70. Schmidt DR, Schreiber SL (1999) Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. Biochemistry 38:14711–14717. doi:10.1021/bi991614n

    Article  PubMed  CAS  Google Scholar 

  71. Zhang XY, DeSalle LM, Patel JH et al (2005) Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proc Natl Acad Sci USA 102:13968–13973. doi:10.1073/pnas.0502330102

    Article  PubMed  CAS  Google Scholar 

  72. Molli PR, Singh RR, Lee SW, Kumar R (2008) MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. Oncogene 27:1971–1980. doi:10.1038/sj.onc.1210839

    Article  PubMed  CAS  Google Scholar 

  73. Aramaki Y, Ogawa K, Toh Y et al (2005) Direct interaction between metastasis-associated protein 1 and endophilin 3. FEBS Lett 579:3731–3736. doi:10.1016/j.febslet.2005.05.069

    Article  PubMed  CAS  Google Scholar 

  74. Nicolson GL, Nawa A, Toh Y, Taniguchi S, Nishimori K, Moustafa A (2003) Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin Exp Metastasis 20:19–24. doi:10.1023/A:1022534217769

    Article  PubMed  CAS  Google Scholar 

  75. Qian H, Yu J, Li Y et al (2007) RNA interference against metastasis-associated gene 1 inhibited metastasis of B16F10 melanoma cell in C57BL/6 model. Biol Cell 99:573–581. doi:10.1042/BC20060130

    Article  PubMed  CAS  Google Scholar 

  76. Singh RR, Kaluarachchi K, Chen M et al (2006) Solution structure and antiestrogenic activity of the unique C-terminal, NR-box motif-containing region of MTA1s. J Biol Chem 281:25612–25621. doi:10.1074/jbc.M604444200

    Article  PubMed  CAS  Google Scholar 

  77. Assudani DP, Ahmad M, Li G, Rees RC, Ali SA (2006) Immunotherapeutic potential of DISC-HSV and OX40L in cancer. Cancer Immunol Immunother 55:104–111. doi:10.1007/s00262-005-0004-y

    Article  PubMed  CAS  Google Scholar 

  78. Li G, Miles A, Line A, Rees RC (2004) Identification of tumour antigens by serological analysis of cDNA expression cloning. Cancer Immunol Immunother 53:139–143. doi:10.1007/s00262-003-0471-y

    Article  PubMed  CAS  Google Scholar 

  79. Li W, Zhang J, Liu X, Xu R, Zhang Y (2007) Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. Cell Tissue Res 329:351–362. doi:10.1007/s00441-007-0412-8

    Article  PubMed  CAS  Google Scholar 

  80. Li W, Liu XP, Xu RJ, Zhang YQ (2007) Immunolocalization assessment of metastasis-associated protein 1 in human and mouse mature testes and its association with spermatogenesis. Asian J Androl 9:345–352. doi:10.1111/j.1745-7262.2007.00245.x

    Article  PubMed  CAS  Google Scholar 

  81. Thakur MK, Ghosh S (2008) Interaction of estrogen receptor alpha transactivation domain with MTA1 decreases in old mouse brain. J Mol Neurosci. doi:10.1007/s12031-008-9131-1

  82. Manavathi B, Peng S, Rayala SK et al (2007) Repression of Six3 by a corepressor regulates rhodopsin expression. Proc Natl Acad Sci USA 104:13128–13133. doi:10.1073/pnas.0705878104

    Article  PubMed  CAS  Google Scholar 

  83. Li W, Zhu H, Bao W et al (2008) Involvement of metastasis tumor antigen 1 in hepatic regeneration and proliferation. Cell Physiol Biochem 22:315–326. doi:10.1159/000149810

    Article  PubMed  CAS  Google Scholar 

  84. Chen Z, Han M (2001) Role of C. elegans lin-40 MTA in vulval fate specification and morphogenesis. Development 128:4911–4921

    PubMed  CAS  Google Scholar 

  85. Solari F, Ahringer J (2000) NURD-complex genes antagonise Ras-induced vulval development in Caenorhabditis elegans. Curr Biol 10:223–226. doi:10.1016/S0960-9822(00)00343-2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Toh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toh, Y., Nicolson, G.L. The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clin Exp Metastasis 26, 215–227 (2009). https://doi.org/10.1007/s10585-008-9233-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9233-8

Keywords

Navigation