Skip to main content

Advertisement

Log in

Pediatric hemispheric high-grade glioma: targeting the future

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pediatric high-grade gliomas (pHGGs) are a group of tumors affecting approximately 0.85 children per 100,000 annually. The general outcome for these tumors is poor with 5-year survival rates of less than 20%. It is now recognized that these tumors represent a heterogeneous group of tumors rather than one entity. Large-scale genomic analyses have led to a greater understanding of the molecular drivers of different subtypes of these tumors and have also aided in the development of subtype-specific therapies. For example, for pHGG with NTRK fusions, promising new targeted therapies are actively being explored. Herein, we review the clinico-pathologic and molecular classification of these tumors, historical treatments, current management strategies, and therapies currently under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., & Ellison, D. W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803–820. https://doi.org/10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  2. Fangusaro, J. (2012). Pediatric high grade glioma: A review and update on tumor clinical characteristics and biology. Frontiers in Oncology, 2, 105. https://doi.org/10.3389/fonc.2012.00105.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bandopadhayay, P., Bergthold, G., London, W. B., Goumnerova, L. C., Morales La Madrid, A., Marcus, K. J., et al. (2014). Long-term outcome of 4,040 children diagnosed with pediatric low-grade gliomas: An analysis of the surveillance epidemiology and end results (SEER) database. Pediatric Blood & Cancer, 61(7), 1173–1179. https://doi.org/10.1002/pbc.24958.

    Article  Google Scholar 

  4. Qaddoumi, I., Sultan, I., & Gajjar, A. (2009). Outcome and prognostic features in pediatric gliomas: A review of 6212 cases from the surveillance, epidemiology, and end results database. Cancer, 115(24), 5761–5770. https://doi.org/10.1002/cncr.24663.

    Article  PubMed  Google Scholar 

  5. Ostrom, Q. T., Cioffi, G., Gittleman, H., Patil, N., Waite, K., Kruchko, C., & Barnholtz-Sloan, J. S. (2019). CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012-2016. Neuro-Oncology, 21(Supplement_5), v1–v100. https://doi.org/10.1093/neuonc/noz150.

  6. Q. T. Ostrom, H. Gittleman, P. Liao, C. Rouse, Y. Chen, J. Dowling, Y. Wolinsky, C. Kruchko, J. Barnholtz-Sloan, (2014) CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011. Neuro-Oncology, 16(Supplement_4), iv1–iv63.

  7. Withrow, D. R., de Gonzalez, A. B., Lam, C. J. K., Warren, K. E., & Shiels, M. S. (2019). Trends in pediatric central nervous system tumor incidence in the United States, 1998-2013. Cancer epidemiology, Biomarkers & Prevention, 28(3), 522–530. https://doi.org/10.1158/1055-9965.EPI-18-0784.

    Article  Google Scholar 

  8. Philips, A., Henshaw, D. L., Lamburn, G., & O’Carroll, M. J. (2018). Brain tumours: Rise in glioblastoma multiforme incidence in England 1995-2015 suggests an adverse environmental or lifestyle factor. Journal of Environmental and Public Health, 2018, 7910754. https://doi.org/10.1155/2018/7910754.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lahkola, A., Auvinen, A., Raitanen, J., Schoemaker, M. J., Christensen, H. C., Feychting, M., Johansen, C., Klaeboe, L., Lönn, S., Swerdlow, A. J., Tynes, T., & Salminen, T. (2007). Mobile phone use and risk of glioma in 5 North European countries. International Journal of Cancer, 120(8), 1769–1775. https://doi.org/10.1002/ijc.22503.

    Article  CAS  PubMed  Google Scholar 

  10. Yoon, S., Choi, J.-W., Lee, E., An, H., Choi, H. D., & Kim, N. (2015). Mobile phone use and risk of glioma: A case-control study in Korea for 2002-2007. Environmental health and toxicology, 30, e2015015. https://doi.org/10.5620/eht.e2015015.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smith, T., Yuan, Y., Walker, E., & Davis, F. (2019). Brain Tumor Registry of Canada (BTRC): Incidence Report 2010–2015. Brain tumor registry of Canada. Retrieved from https://braintumourregistry.ca/full-report/

  12. Kang, J.-M., Ha, J., Hong, E. K., Ju, H. Y., Park, B. K., Shin, S.-H., et al. (2019). A Nationwide, population-based epidemiologic study of childhood brain tumors in Korea, 2005-2014: A comparison with United States data. Cancer Epidemiology, Biomarkers & Prevention, 28(2), 409–416. https://doi.org/10.1158/1055-9965.EPI-18-0634.

    Article  Google Scholar 

  13. Stiller, C. A., Bayne, A. M., Chakrabarty, A., Kenny, T., & Chumas, P. (2019). Incidence of childhood CNS tumours in Britain and variation in rates by definition of malignant behaviour: Population-based study. BMC Cancer, 19(1), 139. https://doi.org/10.1186/s12885-019-5344-7.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Arora, R. S., Alston, R. D., Eden, T. O. B., Estlin, E. J., Moran, A., & Birch, J. M. (2009). Age-incidence patterns of primary CNS tumors in children, adolescents, and adults in England. Neuro-oncology, 11(4), 403–413. https://doi.org/10.1215/15228517-2008-097.

    Article  PubMed  PubMed Central  Google Scholar 

  15. El-Ayadi, M., Ansari, M., Sturm, D., Gielen, G. H., Warmuth-Metz, M., Kramm, C. M., & von Bueren, A. O. (2017). High-grade glioma in very young children: A rare and particular patient population. Oncotarget, 8(38), 64564–64578. https://doi.org/10.18632/oncotarget.18478.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ostrom, Q. T., de Blank, P. M., Kruchko, C., Petersen, C. M., Liao, P., Finlay, J. L., Stearns, D. S., Wolff, J. E., Wolinsky, Y., Letterio, J. J., & Barnholtz-Sloan, J. S. (2015). Alex’s Lemonade Stand Foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncology, 16(Suppl 10), x1–x36. https://doi.org/10.1093/neuonc/nou327.

    Article  PubMed  Google Scholar 

  17. Wilne, S., Collier, J., Kennedy, C., Koller, K., Grundy, R., & Walker, D. (2007). Presentation of childhood CNS tumours: A systematic review and meta-analysis. The Lancet Oncology, 8(8), 685–695. https://doi.org/10.1016/S1470-2045(07)70207-3.

    Article  PubMed  Google Scholar 

  18. Sánchez Fernández, I., & Loddenkemper, T. (2017). Seizures caused by brain tumors in children. Seizure, 44, 98–107. https://doi.org/10.1016/j.seizure.2016.11.028.

    Article  PubMed  Google Scholar 

  19. Patel, V., McNinch, N. L., & Rush, S. (2019). Diagnostic delay and morbidity of central nervous system tumors in children and young adults: A pediatric hospital experience. Journal of Neuro-Oncology, 143(2), 297–304. https://doi.org/10.1007/s11060-019-03160-9.

    Article  PubMed  Google Scholar 

  20. Reulecke, B. C., Erker, C. G., Fiedler, B. J., Niederstadt, T.-U., & Kurlemann, G. (2008). Brain tumors in children: Initial symptoms and their influence on the time span between symptom onset and diagnosis. Journal of Child Neurology, 23(2), 178–183. https://doi.org/10.1177/0883073807308692.

    Article  PubMed  Google Scholar 

  21. Mehta, V., Chapman, A., McNeely, P. D., Walling, S., & Howes, W. J. (2002). Latency between symptom onset and diagnosis of pediatric brain tumors: An eastern Canadian geographic study. Neurosurgery, 51(2), 365–372 discussion 372.

    Article  PubMed  Google Scholar 

  22. Panigrahy, A., & Blüml, S. (2009). Neuroimaging of pediatric brain tumors: From basic to advanced magnetic resonance imaging (MRI). Journal of Child Neurology, 24(11), 1343–1365. https://doi.org/10.1177/0883073809342129.

    Article  PubMed  Google Scholar 

  23. Dallery, F., Bouzerar, R., Michel, D., Attencourt, C., Promelle, V., Peltier, J., Constans, J. M., Balédent, O., & Gondry-Jouet, C. (2017). Perfusion magnetic resonance imaging in pediatric brain tumors. Neuroradiology, 59(11), 1143–1153. https://doi.org/10.1007/s00234-017-1917-9.

    Article  CAS  PubMed  Google Scholar 

  24. Chaddad, A., Kucharczyk, M. J., Daniel, P., Sabri, S., Jean-Claude, B. J., Niazi, T., & Abdulkarim, B. (2019). Radiomics in glioblastoma: Current status and challenges facing clinical implementation. Frontiers in Oncology, 9, 374. https://doi.org/10.3389/fonc.2019.00374.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pan, C.-C., Liu, J., Tang, J., Chen, X., Chen, F., Wu, Y.-L., Geng, Y. B., Xu, C., Zhang, X., Wu, Z., Gao, P. Y., Zhang, J. T., Yan, H., Liao, H., & Zhang, L.-W. (2019). A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Radiotherapy and Oncology, 130, 172–179. https://doi.org/10.1016/j.radonc.2018.07.011.

    Article  CAS  PubMed  Google Scholar 

  26. Collet, S., Valable, S., Constans, J. M., Lechapt-Zalcman, E., Roussel, S., Delcroix, N., Abbas, A., Ibazizene, M., Bernaudin, M., Barré, L., Derlon, J. M., & Guillamo, J. S. (2015). [(18)F]-fluoro-L-thymidine PET and advanced MRI for preoperative grading of gliomas. NeuroImage. Clinical, 8, 448–454. https://doi.org/10.1016/j.nicl.2015.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morana, G., Piccardo, A., Tortora, D., Puntoni, M., Severino, M., Nozza, P., Ravegnani, M., Consales, A., Mascelli, S., Raso, A., Cabria, M., Verrico, A., Milanaccio, C., & Rossi, A. (2017). Grading and outcome prediction of pediatric diffuse astrocytic tumors with diffusion and arterial spin labeling perfusion MRI in comparison with 18F-DOPA PET. European Journal of Nuclear Medicine and Molecular Imaging, 44(12), 2084–2093. https://doi.org/10.1007/s00259-017-3777-2.

    Article  CAS  PubMed  Google Scholar 

  28. Zach, L., Guez, D., Last, D., Daniels, D., Grober, Y., Nissim, O., Hoffmann, C., Nass, D., Talianski, A., Spiegelmann, R., Cohen, Z. R., & Mardor, Y. (2012). Delayed contrast extravasation MRI for depicting tumor and non-tumoral tissues in primary and metastatic brain tumors. PLoS One, 7(12), e52008. https://doi.org/10.1371/journal.pone.0052008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zach, L., Guez, D., Last, D., Daniels, D., Grober, Y., Nissim, O., Hoffmann, C., Nass, D., Talianski, A., Spiegelmann, R., Tsarfaty, G., Salomon, S., Hadani, M., Kanner, A., Blumenthal, D. T., Bukstein, F., Yalon, M., Zauberman, J., Roth, J., Shoshan, Y., Fridman, E., Wygoda, M., Limon, D., Tzuk, T., Cohen, Z. R., & Mardor, Y. (2015). Delayed contrast extravasation MRI: A new paradigm in neuro-oncology. Neuro-oncology, 17(3), 457–465. https://doi.org/10.1093/neuonc/nou230.

    Article  CAS  PubMed  Google Scholar 

  30. Davis, T., Doyle, H., Tobias, V., Ellison, D. W., & Ziegler, D. S. (2016). Case report of spontaneous resolution of a congenital glioblastoma. Pediatrics, 137(4). https://doi.org/10.1542/peds.2015-1241.

  31. Kramm, C. M., Wagner, S., Van Gool, S., Schmid, H., Sträter, R., Gnekow, A., et al. (2006). Improved survival after gross total resection of malignant gliomas in pediatric patients from the HIT-GBM studies. Anticancer Research, 26(5B), 3773–3779.

    PubMed  Google Scholar 

  32. Finlay, J. L., Boyett, J. M., Yates, A. J., Wisoff, J. H., Milstein, J. M., Geyer, J. R., Bertolone, S. J., McGuire, P., Cherlow, J. M., & Tefft, M. (1995). Randomized phase III trial in childhood high-grade astrocytoma comparing vincristine, lomustine, and prednisone with the eight-drugs-in-1-day regimen. Children’s Cancer group. Journal of Clinical Oncology, 13(1), 112–123. https://doi.org/10.1200/JCO.1995.13.1.112.

    Article  CAS  PubMed  Google Scholar 

  33. Walston, S., Hamstra, D. A., Oh, K., Woods, G., Guiou, M., Olshefski, R. S., Chakravarti, A., & Williams, T. M. (2015). A multi-institutional experience in pediatric high-grade glioma. Frontiers in Oncology, 5, 28. https://doi.org/10.3389/fonc.2015.00028.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Adams, H., Adams, H. H. H., Jackson, C., Rincon-Torroella, J., Jallo, G. I., & Quiñones-Hinojosa, A. (2016). Evaluating extent of resection in pediatric glioblastoma: A multiple propensity score-adjusted population-based analysis. Child’s Nervous System, 32(3), 493–503. https://doi.org/10.1007/s00381-015-3006-x.

    Article  PubMed  Google Scholar 

  35. Duffner, P. K., Horowitz, M. E., Krischer, J. P., Friedman, H. S., Burger, P. C., Cohen, M. E., Sanford, R. A., Mulhern, R. K., James, H. E., & Freeman, C. R. (1993). Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. The New England Journal of Medicine, 328(24), 1725–1731. https://doi.org/10.1056/NEJM199306173282401.

    Article  CAS  PubMed  Google Scholar 

  36. Dufour, C., Grill, J., Lellouch-Tubiana, A., Puget, S., Chastagner, P., Frappaz, D., Doz, F., Pichon, F., Plantaz, D., Gentet, J. C., Raquin, M. A., & Kalifa, C. (2006). High-grade glioma in children under 5 years of age: A chemotherapy only approach with the BBSFOP protocol. European Journal of Cancer, 42(17), 2939–2945. https://doi.org/10.1016/j.ejca.2006.06.021.

    Article  CAS  PubMed  Google Scholar 

  37. Roddy, E., Sear, K., Felton, E., Tamrazi, B., Gauvain, K., Torkildson, J., Buono, B. D., Samuel, D., Haas-Kogan, D. A., Chen, J., Goldsby, R. E., Banerjee, A., Lupo, J. M., Molinaro, A. M., Fullerton, H. J., & Mueller, S. (2016). Presence of cerebral microbleeds is associated with worse executive function in pediatric brain tumor survivors. Neuro-oncology, 18(11), 1548–1558. https://doi.org/10.1093/neuonc/now163.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mueller, S., Fullerton, H. J., Stratton, K., Leisenring, W., Weathers, R. E., Stovall, M., Armstrong, G. T., Goldsby, R. E., Packer, R. J., Sklar, C. A., Bowers, D. C., Robison, L. L., & Krull, K. R. (2013). Radiation, atherosclerotic risk factors, and stroke risk in survivors of pediatric cancer: A report from the childhood cancer survivor study. International Journal of Radiation Oncology, Biology, Physics, 86(4), 649–655. https://doi.org/10.1016/j.ijrobp.2013.03.034.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fouladi, M., Gilger, E., Kocak, M., Wallace, D., Buchanan, G., Reeves, C., Robbins, N., Merchant, T., Kun, L. E., Khan, R., Gajjar, A., & Mulhern, R. (2005). Intellectual and functional outcome of children 3 years old or younger who have CNS malignancies. Journal of Clinical Oncology, 23(28), 7152–7160. https://doi.org/10.1200/JCO.2005.01.214.

    Article  PubMed  Google Scholar 

  40. Cohen, B. H., Packer, R. J., Siegel, K. R., Rorke, L. B., D’Angio, G., Sutton, L. N., et al. (1993). Brain tumors in children under 2 years: Treatment, survival and long-term prognosis. Pediatric Neurosurgery, 19(4), 171–179. https://doi.org/10.1159/000120727.

    Article  CAS  PubMed  Google Scholar 

  41. Brinkman, T. M., Krasin, M. J., Liu, W., Armstrong, G. T., Ojha, R. P., Sadighi, Z. S., Gupta, P., Kimberg, C., Srivastava, D., Merchant, T. E., Gajjar, A., Robison, L. L., Hudson, M. M., & Krull, K. R. (2016). Long-term neurocognitive functioning and social attainment in adult survivors of pediatric CNS tumors: Results from the St Jude lifetime cohort study. Journal of Clinical Oncology, 34(12), 1358–1367. https://doi.org/10.1200/JCO.2015.62.2589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ruben, J. D., Dally, M., Bailey, M., Smith, R., McLean, C. A., & Fedele, P. (2006). Cerebral radiation necrosis: Incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. International Journal of Radiation Oncology, Biology, Physics, 65(2), 499–508. https://doi.org/10.1016/j.ijrobp.2005.12.002.

    Article  PubMed  Google Scholar 

  43. Tsang, D. S., Oliveira, C., Bouffet, E., Hawkins, C., Ramaswamy, V., Yee, R., et al. (2019). Repeat irradiation for children with supratentorial high-grade glioma. Pediatric Blood & Cancer, 66(9), e27881. https://doi.org/10.1002/pbc.27881.

    Article  CAS  Google Scholar 

  44. Eaton, B. R., Esiashvili, N., Kim, S., Weyman, E. A., Thornton, L. T., Mazewski, C., MacDonald, T., Ebb, D., MacDonald, S., Tarbell, N. J., & Yock, T. I. (2016). Clinical outcomes among children with standard-risk medulloblastoma treated with proton and photon radiation therapy: A comparison of disease control and overall survival. International Journal of Radiation Oncology, Biology, Physics, 94(1), 133–138. https://doi.org/10.1016/j.ijrobp.2015.09.014.

    Article  PubMed  Google Scholar 

  45. Luu, Q. T., Loredo, L. N., Archambeau, J. O., Yonemoto, L. T., Slater, J. M., & Slater, J. D. (2006). Fractionated proton radiation treatment for pediatric craniopharyngioma: Preliminary report. Cancer Journal, 12(2), 155–159.

    PubMed  Google Scholar 

  46. Eaton, B. R., Chowdhry, V., Weaver, K., Liu, L., Ebb, D., MacDonald, S. M., et al. (2015). Use of proton therapy for re-irradiation in pediatric intracranial ependymoma. Radiotherapy and Oncology, 116(2), 301–308. https://doi.org/10.1016/j.radonc.2015.07.023.

    Article  PubMed  Google Scholar 

  47. Mizumoto, M., Oshiro, Y., Takizawa, D., Fukushima, T., Fukushima, H., Yamamoto, T., Muroi, A., Okumura, T., Tsuboi, K., & Sakurai, H. (2015). Proton beam therapy for pediatric ependymoma. Pediatrics International, 57(4), 567–571. https://doi.org/10.1111/ped.12624.

    Article  PubMed  Google Scholar 

  48. Harrabi, S. B., Bougatf, N., Mohr, A., Haberer, T., Herfarth, K., Combs, S. E., Debus, J., & Adeberg, S. (2016). Dosimetric advantages of proton therapy over conventional radiotherapy with photons in young patients and adults with low-grade glioma. Strahlentherapie und Onkologie, 192(11), 759–769. https://doi.org/10.1007/s00066-016-1005-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vora, S. A., Gondi, V., Tseng, Y. D., Vargas, C. E., Larson, G. L., Tsai, H. K., et al. (2018). Safety and efficacy of proton beam therapy for high-grade glioma: Initial report from the proton collaborative group (PCG). International Journal of Radiation Oncology*Biology*Physics, 102(3), e362. https://doi.org/10.1016/j.ijrobp.2018.07.1089.

    Article  Google Scholar 

  50. Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J. B., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352(10), 987–996. https://doi.org/10.1056/NEJMoa043330.

    Article  CAS  PubMed  Google Scholar 

  51. Cohen, K. J., Heideman, R. L., Zhou, T., Holmes, E. J., Lavey, R. S., Bouffet, E., & Pollack, I. F. (2011). Temozolomide in the treatment of children with newly diagnosed diffuse intrinsic pontine gliomas: A report from the Children’s Oncology Group. Neuro-oncology, 13(4), 410–416. https://doi.org/10.1093/neuonc/noq205.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jakacki, R. I., Cohen, K. J., Buxton, A., Krailo, M. D., Burger, P. C., Rosenblum, M. K., Brat, D. J., Hamilton, R. L., Eckel, S. P., Zhou, T., Lavey, R. S., & Pollack, I. F. (2016). Phase 2 study of concurrent radiotherapy and temozolomide followed by temozolomide and lomustine in the treatment of children with high-grade glioma: A report of the Children’s Oncology Group ACNS0423 study. Neuro-oncology, 18(10), 1442–1450. https://doi.org/10.1093/neuonc/now038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karremann, M., Krämer, N., Hoffmann, M., Wiese, M., Beilken, A., Corbacioglu, S., et al. (2017). Haematological malignancies following temozolomide treatment for paediatric high-grade glioma. European Journal of Cancer, 81, 1–8. https://doi.org/10.1016/j.ejca.2017.04.023.

    Article  CAS  PubMed  Google Scholar 

  54. Mackay, A., Burford, A., Carvalho, D., Izquierdo, E., Fazal-Salom, J., Taylor, K. R., et al. (2017). Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer Cell, 32(4), 520–537.e5. https://doi.org/10.1016/j.ccell.2017.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schwartzentruber, J., Korshunov, A., Liu, X.-Y., Jones, D. T. W., Pfaff, E., Jacob, K., et al. (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 482(7384), 226–231. https://doi.org/10.1038/nature10833.

    Article  CAS  PubMed  Google Scholar 

  56. Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D.-A., Jones, D. T. W., Konermann, C., & Pfister, S. M. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22(4), 425–437. https://doi.org/10.1016/j.ccr.2012.08.024.

    Article  CAS  PubMed  Google Scholar 

  57. Ferris, S. P., Goode, B., Joseph, N. M., Kline, C. N., Samuel, D., Gupta, N., Bollen, A., Perry, A., Mueller, S., & Solomon, D. A. (2016). IDH1 mutation can be present in diffuse astrocytomas and giant cell glioblastomas of young children under 10 years of age. Acta Neuropathologica, 132(1), 153–155. https://doi.org/10.1007/s00401-016-1579-4.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Guerreiro Stucklin, A. S., Ryall, S., Fukuoka, K., Zapotocky, M., Lassaletta, A., Li, C., Bridge, T., Kim, B., Arnoldo, A., Kowalski, P. E., Zhong, Y., Johnson, M., Li, C., Ramani, A. K., Siddaway, R., Nobre, L. F., de Antonellis, P., Dunham, C., Cheng, S., Boué, D. R., Finlay, J. L., Coven, S. L., de Prada, I., Perez-Somarriba, M., Faria, C. C., Grotzer, M. A., Rushing, E., Sumerauer, D., Zamecnik, J., Krskova, L., Garcia Ariza, M., Cruz, O., Morales la Madrid, A., Solano, P., Terashima, K., Nakano, Y., Ichimura, K., Nagane, M., Sakamoto, H., Gil-da-Costa, M. J., Silva, R., Johnston, D. L., Michaud, J., Wilson, B., van Landeghem, F., Oviedo, A., McNeely, P., Crooks, B., Fried, I., Zhukova, N., Hansford, J. R., Nageswararao, A., Garzia, L., Shago, M., Brudno, M., Irwin, M. S., Bartels, U., Ramaswamy, V., Bouffet, E., Taylor, M. D., Tabori, U., & Hawkins, C. (2019). Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nature Communications, 10(1), 4343. https://doi.org/10.1038/s41467-019-12187-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wu, G., Diaz, A. K., Paugh, B. S., Rankin, S. L., Ju, B., Li, Y., Zhu, X., Qu, C., Chen, X., Zhang, J., Easton, J., Edmonson, M., Ma, X., Lu, C., Nagahawatte, P., Hedlund, E., Rusch, M., Pounds, S., Lin, T., Onar-Thomas, A., Huether, R., Kriwacki, R., Parker, M., Gupta, P., Becksfort, J., Wei, L., Mulder, H. L., Boggs, K., Vadodaria, B., Yergeau, D., Russell, J. C., Ochoa, K., Fulton, R. S., Fulton, L. L., Jones, C., Boop, F. A., Broniscer, A., Wetmore, C., Gajjar, A., Ding, L., Mardis, E. R., Wilson, R. K., Taylor, M. R., Downing, J. R., Ellison, D. W., Zhang, J., & Baker, S. J. (2014). The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, 46(5), 444–450. https://doi.org/10.1038/ng.2938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Campbell, B. B., Light, N., Fabrizio, D., Zatzman, M., Fuligni, F., de Borja, R., et al. (2017). Comprehensive analysis of hypermutation in human cancer. Cell, 171(5), 1042–1056.e10. https://doi.org/10.1016/j.cell.2017.09.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Amayiri, N., Tabori, U., Campbell, B., Bakry, D., Aronson, M., Durno, C., et al. (2016). High frequency of mismatch repair deficiency among pediatric high grade gliomas in Jordan. International Journal of Cancer, 138(2), 380–385. https://doi.org/10.1002/ijc.29724.

    Article  CAS  PubMed  Google Scholar 

  62. Ascierto, P. A. (2012). MEK inhibition in BRAF-mutated melanoma. The New England Journal of Medicine, 367(14), 1364; author reply 1365. https://doi.org/10.1056/NEJMc1209663.

    Article  CAS  PubMed  Google Scholar 

  63. Toll, S. A., Tran, H. N., Cotter, J., Judkins, A. R., Tamrazi, B., Biegel, J. A., et al. (2019). Sustained response of three pediatric BRAFV600E mutated high-grade gliomas to combined BRAF and MEK inhibitor therapy. Oncotarget, 10(4), 551–557. https://doi.org/10.18632/oncotarget.26560.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lassaletta, A., Zapotocky, M., Mistry, M., Ramaswamy, V., Honnorat, M., Krishnatry, R., Guerreiro Stucklin, A., Zhukova, N., Arnoldo, A., Ryall, S., Ling, C., McKeown, T., Loukides, J., Cruz, O., de Torres, C., Ho, C. Y., Packer, R. J., Tatevossian, R., Qaddoumi, I., Harreld, J. H., Dalton, J. D., Mulcahy-Levy, J., Foreman, N., Karajannis, M. A., Wang, S., Snuderl, M., Nageswara Rao, A., Giannini, C., Kieran, M., Ligon, K. L., Garre, M. L., Nozza, P., Mascelli, S., Raso, A., Mueller, S., Nicolaides, T., Silva, K., Perbet, R., Vasiljevic, A., Faure Conter, C., Frappaz, D., Leary, S., Crane, C., Chan, A., Ng, H. K., Shi, Z. F., Mao, Y., Finch, E., Eisenstat, D., Wilson, B., Carret, A. S., Hauser, P., Sumerauer, D., Krskova, L., Larouche, V., Fleming, A., Zelcer, S., Jabado, N., Rutka, J. T., Dirks, P., Taylor, M. D., Chen, S., Bartels, U., Huang, A., Ellison, D. W., Bouffet, E., Hawkins, C., & Tabori, U. (2017). Therapeutic and prognostic implications of BRAF V600E in pediatric low-grade gliomas. Journal of Clinical Oncology, 35(25), 2934–2941. https://doi.org/10.1200/JCO.2016.71.8726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mistry, M., Zhukova, N., Merico, D., Rakopoulos, P., Krishnatry, R., Shago, M., Stavropoulos, J., Alon, N., Pole, J. D., Ray, P. N., Navickiene, V., Mangerel, J., Remke, M., Buczkowicz, P., Ramaswamy, V., Guerreiro Stucklin, A., Li, M., Young, E. J., Zhang, C., Castelo-Branco, P., Bakry, D., Laughlin, S., Shlien, A., Chan, J., Ligon, K. L., Rutka, J. T., Dirks, P. B., Taylor, M. D., Greenberg, M., Malkin, D., Huang, A., Bouffet, E., Hawkins, C. E., & Tabori, U. (2015). BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. Journal of Clinical Oncology, 33(9), 1015–1022. https://doi.org/10.1200/JCO.2014.58.3922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hargrave, D. R., Moreno, L., Broniscer, A., Bouffet, E., Aerts, I., Andre, N., et al. (2018). Dabrafenib in pediatric patients with BRAF V600–positive high-grade glioma (HGG). Journal of Clinical Oncology, 36(15_suppl), 10505–10505. https://doi.org/10.1200/JCO.2018.36.15_suppl.10505.

    Article  Google Scholar 

  67. Nicolaides, T., Nazemi, K., Crawford, J., Kilburn, L., Minturn, J., Gajjar, A., et al. (2017). Pdct-19. A safety study of vemurafenib, an oral inhibitor of brafv600e, in children with recurrent/refractory brafv600e mutant brain tumors: Pnoc-002. Neuro-oncology, 19(suppl_6), vi188–vi188. https://doi.org/10.1093/neuonc/nox168.761.

    Article  PubMed Central  Google Scholar 

  68. Phillips, J. J., Gong, H., Chen, K., Joseph, N. M., van Ziffle, J., Bastian, B. C., Grenert, J. P., Kline, C. N., Mueller, S., Banerjee, A., Nicolaides, T., Gupta, N., Berger, M. S., Lee, H. S., Pekmezci, M., Tihan, T., Bollen, A. W., Perry, A., Shieh, J. T. C., & Solomon, D. A. (2019). The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathology, 29(1), 85–96. https://doi.org/10.1111/bpa.12639.

    Article  CAS  PubMed  Google Scholar 

  69. Alexandrescu, S., Korshunov, A., Lai, S. H., Dabiri, S., Patil, S., Li, R., Shih, C. S., Bonnin, J. M., Baker, J. A., du, E., Scharnhorst, D. W., Samuel, D., Ellison, D. W., & Perry, A. (2016). Epithelioid glioblastomas and anaplastic epithelioid pleomorphic xanthoastrocytomas--same entity or first cousins? Brain Pathology, 26(2), 215–223. https://doi.org/10.1111/bpa.12295.

    Article  CAS  PubMed  Google Scholar 

  70. Ida, C. M., Rodriguez, F. J., Burger, P. C., Caron, A. A., Jenkins, S. M., Spears, G. M., Aranguren, D. L., Lachance, D. H., & Giannini, C. (2015). Pleomorphic xanthoastrocytoma: Natural history and long-term follow-up. Brain Pathology, 25(5), 575–586. https://doi.org/10.1111/bpa.12217.

    Article  CAS  PubMed  Google Scholar 

  71. Amayiri, N., Swaidan, M., & Al, M. (n.d.). Sustained response to targeted therapy in a patient with disseminated anaplastic pleomorphic xanthoastrocytoma. Hussaini….

  72. Korshunov, A., Capper, D., Reuss, D., Schrimpf, D., Ryzhova, M., Hovestadt, V., Sturm, D., Meyer, J., Jones, C., Zheludkova, O., Kumirova, E., Golanov, A., Kool, M., Schüller, U., Mittelbronn, M., Hasselblatt, M., Schittenhelm, J., Reifenberger, G., Herold-Mende, C., Lichter, P., von Deimling, A., Pfister, S. M., & Jones, D. T. W. (2016). Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathologica, 131(1), 137–146. https://doi.org/10.1007/s00401-015-1493-1.

    Article  CAS  PubMed  Google Scholar 

  73. Donson, A. M., Addo-Yobo, S. O., Handler, M. H., Gore, L., & Foreman, N. K. (2007). MGMT promoter methylation correlates with survival benefit and sensitivity to temozolomide in pediatric glioblastoma. Pediatric Blood & Cancer, 48(4), 403–407. https://doi.org/10.1002/pbc.20803.

    Article  Google Scholar 

  74. Bjerke, L., Mackay, A., Nandhabalan, M., Burford, A., Jury, A., Popov, S., Bax, D. A., Carvalho, D., Taylor, K. R., Vinci, M., Bajrami, I., McGonnell, I., Lord, C. J., Reis, R. M., Hargrave, D., Ashworth, A., Workman, P., & Jones, C. (2013). Histone H3.3. Mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discovery, 3(5), 512–519. https://doi.org/10.1158/2159-8290.CD-12-0426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cerrato, A., Morra, F., & Celetti, A. (2016). Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: The rationale for their inclusion in the clinic. Journal of Experimental & Clinical Cancer Research, 35(1), 179. https://doi.org/10.1186/s13046-016-0456-2.

    Article  CAS  Google Scholar 

  76. Sulkowski, P. L., Corso, C. D., Robinson, N. D., Scanlon, S. E., Purshouse, K. R., Bai, H., Liu, Y., Sundaram, R. K., Hegan, D. C., Fons, N. R., Breuer, G. A., Song, Y., Mishra-Gorur, K., de Feyter, H. M., de Graaf, R. A., Surovtseva, Y. V., Kachman, M., Halene, S., Günel, M., Glazer, P. M., & Bindra, R. S. (2017). 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Science Translational Medicine, 9(375). https://doi.org/10.1126/scitranslmed.aal2463.

  77. Lu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C. R., Khanin, R., Figueroa, M. E., Melnick, A., Wellen, K. E., O'Rourke, D. M., Berger, S. L., Chan, T. A., Levine, R. L., Mellinghoff, I. K., & Thompson, C. B. (2012). IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature, 483(7390), 474–478. https://doi.org/10.1038/nature10860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Duffner, P. K., Krischer, J. P., Burger, P. C., Cohen, M. E., Backstrom, J. W., Horowitz, M. E., Sanford, R. A., Friedman, H. S., & Kun, L. E. (1996). Treatment of infants with malignant gliomas: The pediatric oncology group experience. Journal of Neuro-Oncology, 28(2–3), 245–256. https://doi.org/10.1007/bf00250203.

    Article  CAS  PubMed  Google Scholar 

  79. Geyer, J. R., Sposto, R., Jennings, M., Boyett, J. M., Axtell, R. A., Breiger, D., et al. (2005). Multiagent chemotherapy and deferred radiotherapy in infants with malignant brain tumors: A report from the Children’s Cancer group. Journal of Clinical Oncology, 23(30), 7621–7631. https://doi.org/10.1200/JCO.2005.09.095.

    Article  PubMed  Google Scholar 

  80. Espinoza, J. C., Haley, K., Patel, N., Dhall, G., Gardner, S., Allen, J., Torkildson, J., Cornelius, A., Rassekh, R., Bedros, A., Etzl, M., Garvin, J., Pradhan, K., Corbett, R., Sullivan, M., McGowage, G., Stein, D., Jasty, R., Sands, S. A., Ji, L., Sposto, R., & Finlay, J. L. (2016). Outcome of young children with high-grade glioma treated with irradiation-avoiding intensive chemotherapy regimens: Final report of the head start II and III trials. Pediatric Blood & Cancer, 63(10), 1806–1813. https://doi.org/10.1002/pbc.26118.

    Article  CAS  Google Scholar 

  81. Grundy, R. G., Wilne, S. H., Robinson, K. J., Ironside, J. W., Cox, T., Chong, W. K., et al. (2010). Primary postoperative chemotherapy without radiotherapy for treatment of brain tumours other than ependymoma in children under 3 years: Results of the first UKCCSG/SIOP CNS 9204 trial. European Journal of Cancer, 46(1), 120–133. https://doi.org/10.1016/j.ejca.2009.09.013.

    Article  CAS  PubMed  Google Scholar 

  82. Strother, D. R., Lafay-Cousin, L., Boyett, J. M., Burger, P., Aronin, P., Constine, L., Duffner, P., Kocak, M., Kun, L. E., Horowitz, M. E., & Gajjar, A. (2014). Benefit from prolonged dose-intensive chemotherapy for infants with malignant brain tumors is restricted to patients with ependymoma: A report of the pediatric oncology group randomized controlled trial 9233/34. Neuro-oncology, 16(3), 457–465. https://doi.org/10.1093/neuonc/not163.

    Article  PubMed  Google Scholar 

  83. Miranda, C., Greco, A., Miele, C., Pierotti, M. A., & Van Obberghen, E. (2001). IRS-1 and IRS-2 are recruited by TrkA receptor and oncogenic TRK-T1. Journal of Cellular Physiology, 186(1), 35–46. https://doi.org/10.1002/1097-4652(200101)186:1<35::AID-JCP1003>3.0.CO;2-X.

    Article  CAS  PubMed  Google Scholar 

  84. International Cancer Genome Consortium PedBrain Tumor Project. (2016). Recurrent MET fusion genes represent a drug target in pediatric glioblastoma. Nature Medicine, 22(11), 1314–1320. https://doi.org/10.1038/nm.4204.

    Article  CAS  Google Scholar 

  85. Jones, D. T. W., Hutter, B., Jäger, N., Korshunov, A., Kool, M., Warnatz, H.-J., et al. (2013). Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 45(8), 927–932. https://doi.org/10.1038/ng.2682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Desai, A. V., Brodeur, G. M., Foster, J., Shusterman, S., Sabnis, A. J., Macy, M., … Fox, E. (2017). Abstract CT030: STARTRK-NG: A phase 1/1b study of entrectinib in children and adolescents with advanced solid tumors and primary CNS tumors, with or without TRK, ROS1, or ALK fusions. In Clinical Trials (pp. CT030-CT030). Presented at the Proceedings: AACR Annual Meeting 2017; April 1–5, 2017; Washington, DC, American Association for Cancer Research. https://doi.org/10.1158/1538-7445.AM2017-CT030.

  87. Rangaraju, S., Li, G., Christiansen, J., Hornby, Z., Multani, P., Esquibel, V., & Maneval, E. C. (2017). Trth-10. Pediatric phase 1/1b study of entrectinib in patients with primary brain tumors, neuroblastoma, and ntrk, ros1, or alk fusions. Neuro-oncology, 19(suppl_4), iv53–iv53. https://doi.org/10.1093/neuonc/nox083.222.

    Article  PubMed Central  Google Scholar 

  88. Laetsch, T. W., DuBois, S. G., Mascarenhas, L., Turpin, B., Federman, N., Albert, C. M., et al. (2018). Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. The Lancet Oncology, 19(5), 705–714. https://doi.org/10.1016/S1470-2045(18)30119-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Drilon, A., Laetsch, T. W., Kummar, S., DuBois, S. G., Lassen, U. N., Demetri, G. D., et al. (2018). Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. The New England Journal of Medicine, 378(8), 731–739. https://doi.org/10.1056/NEJMoa1714448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ziegler, D. S., Wong, M., Mayoh, C., Kumar, A., Tsoli, M., Mould, E., Tyrrell, V., Khuong-Quang, D. A., Pinese, M., Gayevskiy, V., Cohn, R. J., Lau, L. M. S., Reynolds, M., Cox, M. C., Gifford, A., Rodriguez, M., Cowley, M. J., Ekert, P. G., Marshall, G. M., & Haber, M. (2018). Brief report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. British Journal of Cancer, 119(6), 693–696. https://doi.org/10.1038/s41416-018-0251-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wimmer, K., Kratz, C. P., Vasen, H. F. A., Caron, O., Colas, C., Entz-Werle, N., et al. (2014). Diagnostic criteria for constitutional mismatch repair deficiency syndrome: Suggestions of the European consortium “care for CMMRD” (C4CMMRD). Journal of Medical Genetics, 51(6), 355–365. https://doi.org/10.1136/jmedgenet-2014-102284.

    Article  CAS  PubMed  Google Scholar 

  92. Bakry, D., Aronson, M., Durno, C., Rimawi, H., Farah, R., Alharbi, Q. K., Alharbi, M., Shamvil, A., Ben-Shachar, S., Mistry, M., Constantini, S., Dvir, R., Qaddoumi, I., Gallinger, S., Lerner-Ellis, J., Pollett, A., Stephens, D., Kelies, S., Chao, E., Malkin, D., Bouffet, E., Hawkins, C., & Tabori, U. (2014). Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: Report from the constitutional mismatch repair deficiency consortium. European Journal of Cancer, 50(5), 987–996. https://doi.org/10.1016/j.ejca.2013.12.005.

    Article  PubMed  Google Scholar 

  93. Zhang, J., Walsh, M. F., Wu, G., Edmonson, M. N., Gruber, T. A., Easton, J., Hedges, D., Ma, X., Zhou, X., Yergeau, D. A., Wilkinson, M. R., Vadodaria, B., Chen, X., McGee, R., Hines-Dowell, S., Nuccio, R., Quinn, E., Shurtleff, S. A., Rusch, M., Patel, A., Becksfort, J. B., Wang, S., Weaver, M. S., Ding, L., Mardis, E. R., Wilson, R. K., Gajjar, A., Ellison, D. W., Pappo, A. S., Pui, C. H., Nichols, K. E., & Downing, J. R. (2015). Germline mutations in predisposition genes in pediatric cancer. The New England Journal of Medicine, 373(24), 2336–2346. https://doi.org/10.1056/NEJMoa1508054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sotiriou, C., & Fumagalli, D. (2014). The landscape of genomic alterations. EUROPEAN ….

  95. Durno, C. A., Aronson, M., Tabori, U., Malkin, D., Gallinger, S., & Chan, H. S. L. (2012). Oncologic surveillance for subjects with biallelic mismatch repair gene mutations: 10 year follow-up of a kindred. Pediatric Blood & Cancer, 59(4), 652–656. https://doi.org/10.1002/pbc.24019.

    Article  Google Scholar 

  96. Gettinger, S. N., Horn, L., Gandhi, L., Spigel, D. R., Antonia, S. J., Rizvi, N. A., Powderly, J. D., Heist, R. S., Carvajal, R. D., Jackman, D. M., Sequist, L. V., Smith, D. C., Leming, P., Carbone, D. P., Pinder-Schenck, M. C., Topalian, S. L., Hodi, F. S., Sosman, J. A., Sznol, M., McDermott, D., Pardoll, D. M., Sankar, V., Ahlers, C. M., Salvati, M., Wigginton, J. M., Hellmann, M. D., Kollia, G. D., Gupta, A. K., & Brahmer, J. R. (2015). Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. Journal of Clinical Oncology, 33(18), 2004–2012. https://doi.org/10.1200/JCO.2014.58.3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ciombor, K. K., & Goldberg, R. M. (2018). Hypermutated tumors and immune checkpoint inhibition. Drugs, 78(2), 155–162. https://doi.org/10.1007/s40265-018-0863-0.

    Article  CAS  PubMed  Google Scholar 

  98. Sharma, P., & Allison, J. P. (2015). The future of immune checkpoint therapy. Science, 348(6230), 56–61. https://doi.org/10.1126/science.aaa8172.

    Article  CAS  PubMed  Google Scholar 

  99. Bouffet, E., Larouche, V., Campbell, B. B., Merico, D., de Borja, R., Aronson, M., Durno, C., Krueger, J., Cabric, V., Ramaswamy, V., Zhukova, N., Mason, G., Farah, R., Afzal, S., Yalon, M., Rechavi, G., Magimairajan, V., Walsh, M. F., Constantini, S., Dvir, R., Elhasid, R., Reddy, A., Osborn, M., Sullivan, M., Hansford, J., Dodgshun, A., Klauber-Demore, N., Peterson, L., Patel, S., Lindhorst, S., Atkinson, J., Cohen, Z., Laframboise, R., Dirks, P., Taylor, M., Malkin, D., Albrecht, S., Dudley, R. W., Jabado, N., Hawkins, C. E., Shlien, A., & Tabori, U. (2016). Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. Journal of Clinical Oncology, 34(19), 2206–2211. https://doi.org/10.1200/JCO.2016.66.6552.

    Article  CAS  PubMed  Google Scholar 

  100. AlHarbi, M., Ali Mobark, N., AlMubarak, L., Aljelaify, R., AlSaeed, M., Almutairi, A., Alqubaishi, F., Hussain, M. E., Balbaid, A. A. O., Said Marie, A., AlSubaie, L., AlShieban, S., alTassan, N., Ramkissoon, S. H., & Abedalthagafi, M. (2018). Durable response to nivolumab in a pediatric patient with refractory glioblastoma and constitutional biallelic mismatch repair deficiency. The Oncologist, 23(12), 1401–1406. https://doi.org/10.1634/theoncologist.2018-0163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Larouche, V., Atkinson, J., Albrecht, S., Laframboise, R., Jabado, N., Tabori, U., Bouffet, E., & international bMMRD consortium international bMMRD consortium. (2018). Sustained complete response of recurrent glioblastoma to combined checkpoint inhibition in a young patient with constitutional mismatch repair deficiency. Pediatric Blood & Cancer, 65(12), e27389. https://doi.org/10.1002/pbc.27389.

    Article  Google Scholar 

  102. Peterson, K. M., Shao, C., McCarter, R., MacDonald, T. J., & Byrne, J. (2006). An analysis of SEER data of increasing risk of secondary malignant neoplasms among long-term survivors of childhood brain tumors. Pediatric Blood & Cancer, 47(1), 83–88. https://doi.org/10.1002/pbc.20690.

    Article  Google Scholar 

  103. Carret, A.-S., Tabori, U., Crooks, B., Hukin, J., Odame, I., Johnston, D. L., et al. (2006). Outcome of secondary high-grade glioma in children previously treated for a malignant condition: A study of the Canadian pediatric brain tumour consortium. Radiotherapy and Oncology, 81(1), 33–38. https://doi.org/10.1016/j.radonc.2006.08.005.

    Article  PubMed  Google Scholar 

  104. López, G. Y., Van Ziffle, J., Onodera, C., Grenert, J. P., Yeh, I., Bastian, B. C., et al. (2019). The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathologica, 137(1), 139–150. https://doi.org/10.1007/s00401-018-1906-z.

    Article  CAS  PubMed  Google Scholar 

  105. Grill, J., Massimino, M., Bouffet, E., Azizi, A. A., McCowage, G., Cañete, A., Saran, F., le Deley, M. C., Varlet, P., Morgan, P. S., Jaspan, T., Jones, C., Giangaspero, F., Smith, H., Garcia, J., Elze, M. C., Rousseau, R. F., Abrey, L., Hargrave, D., & Vassal, G. (2018). Phase II, open-label, randomized, multicenter trial (HERBY) of bevacizumab in pediatric patients with newly diagnosed high-grade glioma. Journal of Clinical Oncology, 36(10), 951–958. https://doi.org/10.1200/JCO.2017.76.0611.

    Article  CAS  PubMed  Google Scholar 

  106. Mackay, A., Burford, A., Molinari, V., Jones, D. T. W., Izquierdo, E., Brouwer-Visser, J., et al. (2018). Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade glioma from the HERBY phase II randomized trial. Cancer Cell, 33(5), 829–842.e5. https://doi.org/10.1016/j.ccell.2018.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wick, W., Weller, M., van den Bent, M., Sanson, M., Weiler, M., von Deimling, A., Plass, C., Hegi, M., Platten, M., & Reifenberger, G. (2014). MGMT testing--the challenges for biomarker-based glioma treatment. Nature Reviews. Neurology, 10(7), 372–385. https://doi.org/10.1038/nrneurol.2014.100.

    Article  CAS  PubMed  Google Scholar 

  108. Wang, S. S., Bandopadhayay, P., & Jenkins, M. R. (2019). Towards immunotherapy for pediatric brain tumors. Trends in Immunology, 40(8), 748–761. https://doi.org/10.1016/j.it.2019.05.009.

    Article  CAS  PubMed  Google Scholar 

  109. Cloughesy, T. F., Mochizuki, A. Y., Orpilla, J. R., Hugo, W., Lee, A. H., Davidson, T. B., et al. (2019). Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nature Medicine, 25(3), 477–486. https://doi.org/10.1038/s41591-018-0337-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chiocca, E. A., Yu, J. S., Lukas, R. V., Solomon, I. H., Ligon, K. L., Nakashima, H., Triggs, D. A., Reardon, D. A., Wen, P., Stopa, B. M., Naik, A., Rudnick, J., Hu, J. L., Kumthekar, P., Yamini, B., Buck, J. Y., Demars, N., Barrett, J. A., Gelb, A. B., Zhou, J., Lebel, F., & Cooper, L. J. N. (2019). Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Science Translational Medicine, 11(505). https://doi.org/10.1126/scitranslmed.aaw5680.

  111. Bobo, R. H., Laske, D. W., Akbasak, A., Morrison, P. F., Dedrick, R. L., & Oldfield, E. H. (1994). Convection-enhanced delivery of macromolecules in the brain. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2076–2080. https://doi.org/10.1073/pnas.91.6.2076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kunwar, S., Chang, S., Westphal, M., Vogelbaum, M., Sampson, J., Barnett, G., et al. (2010). Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro-oncology, 12(8), 871–881. https://doi.org/10.1093/neuonc/nop054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kunwar, S., Prados, M. D., & Chang, S. M. (2007). Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal …. Journal of Clinical ….

  114. Lidar, Z., Mardor, Y., Jonas, T., Pfeffer, R., Faibel, M., Nass, D., et al. (2004). Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: A phase I/II clinical study. Journal of Neurosurgery, 100(3), 472–479. https://doi.org/10.3171/jns.2004.100.3.0472.

    Article  CAS  PubMed  Google Scholar 

  115. Souweidane, M. M., Kramer, K., Pandit-Taskar, N., Zhou, Z., Haque, S., Zanzonico, P., Carrasquillo, J. A., Lyashchenko, S. K., Thakur, S. B., Donzelli, M., Turner, R. S., Lewis, J. S., Cheung, N. V., Larson, S. M., & Dunkel, I. J. (2018). Convection-enhanced delivery for diffuse intrinsic pontine glioma: A single-centre, dose-escalation, phase 1 trial. The Lancet Oncology, 19(8), 1040–1050. https://doi.org/10.1016/S1470-2045(18)30322-X.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hynynen, K., McDannold, N., Vykhodtseva, N., Raymond, S., Weissleder, R., Jolesz, F. A., & Sheikov, N. (2006). Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: A method for molecular imaging and targeted drug delivery. Journal of Neurosurgery, 105(3), 445–454. https://doi.org/10.3171/jns.2006.105.3.445.

    Article  CAS  PubMed  Google Scholar 

  117. Zhu, P., & Zhu, J.-J. (2017). Tumor treating fields: A novel and effective therapy for glioblastoma: Mechanism, efficacy, safety and future perspectives. Chinese Clinical Oncology, 6(4), 41. https://doi.org/10.21037/cco.2017.06.29.

    Article  PubMed  Google Scholar 

  118. Stupp, R., Taillibert, S., Kanner, A. A., Kesari, S., Steinberg, D. M., Toms, S. A., Taylor, L. P., Lieberman, F., Silvani, A., Fink, K. L., Barnett, G. H., Zhu, J. J., Henson, J. W., Engelhard, H. H., Chen, T. C., Tran, D. D., Sroubek, J., Tran, N. D., Hottinger, A. F., Landolfi, J., Desai, R., Caroli, M., Kew, Y., Honnorat, J., Idbaih, A., Kirson, E. D., Weinberg, U., Palti, Y., Hegi, M. E., & Ram, Z. (2015). Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: A randomized clinical trial. The Journal of the American Medical Association, 314(23), 2535–2543. https://doi.org/10.1001/jama.2015.16669.

    Article  CAS  PubMed  Google Scholar 

  119. Miller, A. M., Shah, R. H., Pentsova, E. I., Pourmaleki, M., Briggs, S., Distefano, N., Zheng, Y., Skakodub, A., Mehta, S. A., Campos, C., Hsieh, W. Y., Selcuklu, S. D., Ling, L., Meng, F., Jing, X., Samoila, A., Bale, T. A., Tsui, D. W. Y., Grommes, C., Viale, A., Souweidane, M. M., Tabar, V., Brennan, C. W., Reiner, A. S., Rosenblum, M., Panageas, K. S., DeAngelis, L., Young, R. J., Berger, M. F., & Mellinghoff, I. K. (2019). Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature, 565(7741), 654–658. https://doi.org/10.1038/s41586-019-0882-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. De Mattos-Arruda, L., Mayor, R., Ng, C. K. Y., Weigelt, B., Martínez-Ricarte, F., Torrejon, D., et al. (2015). Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nature Communications, 6, 8839. https://doi.org/10.1038/ncomms9839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Mueller, S., Jain, P., Liang, W. S., Kilburn, L., Kline, C., Gupta, N., et al. (2019). A pilot precision medicine trial for children with diffuse intrinsic pontine glioma-PNOC003: A report from the Pacific Pediatric Neuro-Oncology Consortium. International Journal of Cancer, 145(7), 1889–1901. https://doi.org/10.1002/ijc.32258.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Mueller.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coleman, C., Stoller, S., Grotzer, M. et al. Pediatric hemispheric high-grade glioma: targeting the future. Cancer Metastasis Rev 39, 245–260 (2020). https://doi.org/10.1007/s10555-020-09850-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09850-5

Keywords

Navigation