Skip to main content

Advertisement

Log in

MicroRNAs and metastasis: small RNAs play big roles

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding RNAs regulating post-transcriptional gene expression. They play important roles in many biological processes under physiological or pathological conditions, including development, metabolism, tumorigenesis, metastasis, and immune response. Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. Depending on the cancer type, miRNAs can act as oncogenes, tumor suppressors, or metastasis regulators. In this review, we focus on the role of miRNAs as components of molecular networks regulating metastasis. These miRNAs, termed metastamiRs, promote or inhibit metastasis through various mechanisms, including regulation of migration, invasion, colonization, cancer stem cell properties, epithelial-mesenchymal transition, and microenvironment. Some of these metastamiRs represent attractive therapeutic targets for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.

    Article  CAS  PubMed  Google Scholar 

  2. Winter, J., Jung, S., Keller, S., Gregory, R. I., & Diederichs, S. (2009). Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biology, 11(3), 228–234.

    Article  CAS  PubMed  Google Scholar 

  3. Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., et al. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014), 235–240.

    Article  CAS  PubMed  Google Scholar 

  4. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., & Kim, V. N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Genes & Development, 18(24), 3016–3027.

    Article  CAS  Google Scholar 

  5. Han, J., Lee, Y., Yeom, K. H., Nam, J. W., Heo, I., Rhee, J. K., et al. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 125(5), 887–901.

    Article  CAS  PubMed  Google Scholar 

  6. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303(5654), 95–98.

    Article  CAS  PubMed  Google Scholar 

  7. Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development, 17(24), 3011–3016.

    Article  CAS  Google Scholar 

  8. Bohnsack, M. T., Czaplinski, K., & Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 10(2), 185–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ha, M., & Kim, V. N. (2014). Regulation of microRNA biogenesis. Nature Reviews. Molecular Cell Biology, 15(8), 509–524.

    Article  CAS  PubMed  Google Scholar 

  10. Lin, S., & Gregory, R. I. (2015). MicroRNA biogenesis pathways in cancer. Nature Reviews. Cancer, 15(6), 321–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eichhorn, S. W., Guo, H., McGeary, S. E., Rodriguez-Mias, R. A., Shin, C., Baek, D., et al. (2014). mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Molecular Cell, 56(1), 104–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, H., Ingolia, N. T., Weissman, J. S., & Bartel, D. P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature, 466(7308), 835–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431(7006), 350–355.

    Article  CAS  PubMed  Google Scholar 

  14. Massart, J., Katayama, M., & Krook, A. (2016). Micromanaging glucose and lipid metabolism in skeletal muscle: role of microRNAs. Biochimica et Biophysica Acta, 1861(12 Pt B), 2130–2138.

    Article  CAS  PubMed  Google Scholar 

  15. Rupaimoole, R., & Slack, F. J. (2017). MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature Reviews. Drug Discovery, 16(3), 203–222.

    Article  CAS  PubMed  Google Scholar 

  16. Ma, L. (2016). MicroRNA and metastasis. Advances in Cancer Research, 132, 165–207.

    Article  CAS  PubMed  Google Scholar 

  17. Pencheva, N., & Tavazoie, S. F. (2013). Control of metastatic progression by microRNA regulatory networks. Nature Cell Biology, 15(6), 546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Trobaugh, D. W., & Klimstra, W. B. (2017). MicroRNA regulation of RNA virus replication and pathogenesis. Trends in Molecular Medicine, 23(1), 80–93.

    Article  CAS  PubMed  Google Scholar 

  19. Xiao, C., & Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell, 136(1), 26–36.

    Article  CAS  PubMed  Google Scholar 

  20. Ling, H., Fabbri, M., & Calin, G. A. (2013). MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nature Reviews. Drug Discovery, 12(11), 847–865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002). Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 99(24), 15524–15529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Klein, U., Lia, M., Crespo, M., Siegel, R., Shen, Q., Mo, T., et al. (2010). The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell, 17(1), 28–40.

    Article  CAS  PubMed  Google Scholar 

  23. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.

    Article  CAS  PubMed  Google Scholar 

  24. He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435(7043), 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao, C., Srinivasan, L., Calado, D. P., Patterson, H. C., Zhang, B., Wang, J., et al. (2008). Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology, 9(4), 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Krichevsky, A. M., & Gabriely, G. (2009). MiR-21: a small multi-faceted RNA. Journal of Cellular and Molecular Medicine, 13(1), 39–53.

    Article  CAS  PubMed  Google Scholar 

  27. Hatley, M. E., Patrick, D. M., Garcia, M. R., Richardson, J. A., Bassel-Duby, R., van Rooij, E., et al. (2010). Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell, 18(3), 282–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Medina, P. P., Nolde, M., & Slack, F. J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature, 467(7311), 86–90.

    Article  CAS  PubMed  Google Scholar 

  29. Pasquinelli, A. E., Reinhart, B. J., Slack, F., Martindale, M. Q., Kuroda, M. I., Maller, B., et al. (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 408(6808), 86–89.

    Article  CAS  PubMed  Google Scholar 

  30. Balzeau, J., Menezes, M. R., Cao, S., & Hagan, J. P. (2017). The LIN28/let-7 pathway in cancer. Frontiers in Genetics, 8, 31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Johnson, S. M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R., Cheng, A., et al. (2005). RAS is regulated by the let-7 microRNA family. Cell, 120(5), 635–647.

    Article  CAS  PubMed  Google Scholar 

  32. Esquela-Kerscher, A., Trang, P., Wiggins, J. F., Patrawala, L., Cheng, A., Ford, L., et al. (2008). The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle, 7(6), 759–764.

    Article  CAS  PubMed  Google Scholar 

  33. He, X., He, L., & Hannon, G. J. (2007). The guardian’s little helper: microRNAs in the p53 tumor suppressor network. Cancer Research, 67(23), 11099–11101.

    Article  CAS  PubMed  Google Scholar 

  34. He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447(7148), 1130–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Concepcion, C. P., Han, Y. C., Mu, P., Bonetti, C., Yao, E., D'Andrea, A., et al. (2012). Intact p53-dependent responses in miR-34-deficient mice. PLoS Genetics, 8(7), e1002797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cheng, C. Y., Hwang, C. I., Corney, D. C., Flesken-Nikitin, A., Jiang, L., Oner, G. M., et al. (2014). MiR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Reports, 6(6), 1000–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Brabletz, T., Lyden, D., Steeg, P. S., & Werb, Z. (2013). Roadblocks to translational advances on metastasis research. Nature Medicine, 19(9), 1104–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wan, L., Pantel, K., & Kang, Y. (2013). Tumor metastasis: moving new biological insights into the clinic. Nature Medicine, 19(11), 1450–1464.

    Article  CAS  PubMed  Google Scholar 

  39. Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment strategies. Lancet, 369(9574), 1742–1757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Talmadge, J. E., & Fidler, I. J. (2010). AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Research, 70(14), 5649–5669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steeg, P. S. (2012). Perspective: the right trials. Nature, 485(7400), S58–S59.

    Article  CAS  PubMed  Google Scholar 

  42. Sun, Y., & Ma, L. (2015). The emerging molecular machinery and therapeutic targets of metastasis. Trends in Pharmacological Sciences, 36(6), 349–359.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Ma, L., Teruya-Feldstein, J., & Weinberg, R. A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449(7163), 682–688.

    Article  CAS  PubMed  Google Scholar 

  44. Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E. G., et al. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nature Biotechnology, 28(4), 341–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, L. (2010). Role of miR-10b in breast cancer metastasis. Breast Cancer Research, 12(5), 210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Yoo, B., Kavishwar, A., Ross, A., Wang, P., Tabassum, D. P., Polyak, K., et al. (2015). Combining miR-10b-targeted nanotherapy with low-dose doxorubicin elicits durable regressions of metastatic breast cancer. Cancer Research, 75(20), 4407–4415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoo, B., Kavishwar, A., Wang, P., Ross, A., Pantazopoulos, P., Dudley, M., et al. (2017). Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Scientific Reports, 7, 45060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J., Siverly, A. N., Chen, D., Wang, M., Yuan, Y., Wang, Y., et al. (2016). Ablation of miR-10b suppresses oncogene-induced mammary tumorigenesis and metastasis and reactivates tumor-suppressive pathways. Cancer Research, 76(21), 6424–6435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Myers, C., Charboneau, A., Cheung, I., Hanks, D., & Boudreau, N. (2002). Sustained expression of homeobox D10 inhibits angiogenesis. The American Journal of Pathology, 161(6), 2099–2109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chai, G., Liu, N., Ma, J., Li, H., Oblinger, J. L., Prahalad, A. K., et al. (2010). MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Science, 101(9), 1997–2004.

    Article  CAS  PubMed  Google Scholar 

  51. Tian, Y., Luo, A., Cai, Y., Su, Q., Ding, F., Chen, H., et al. (2010). MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. The Journal of Biological Chemistry, 285(11), 7986–7994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma, L., Young, J., Prabhala, H., Pan, E., Mestdagh, P., Muth, D., et al. (2010). MiR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nature Cell Biology, 12(3), 247–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, D., Sun, Y., Wei, Y., Zhang, P., Rezaeian, A. H., Teruya-Feldstein, J., et al. (2012). LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nature Medicine, 18(10), 1511–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Johnson, R. W., Finger, E. C., Olcina, M. M., Vilalta, M., Aguilera, T., Miao, Y., et al. (2016). Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nature Cell Biology, 18(10), 1078–1089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo, Q., Wang, C., Jin, G., Gu, D., Wang, N., Song, J., et al. (2015). LIFR functions as a metastasis suppressor in hepatocellular carcinoma by negatively regulating phosphoinositide 3-kinase/AKT pathway. Carcinogenesis, 36(10), 1201–1212.

    Article  CAS  PubMed  Google Scholar 

  56. Sachdeva, M., Mito, J. K., Lee, C. L., Zhang, M., Li, Z., Dodd, R. D., et al. (2014). MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. The Journal of Clinical Investigation, 124(10), 4305–4319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Segura, M. F., Hanniford, D., Menendez, S., Reavie, L., Zou, X., Alvarez-Diaz, S., et al. (2009). Aberrant miR-182 expression promotes melanoma metastasis by repressing FOXO3 and microphthalmia-associated transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1814–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tavazoie, S. F., Alarcon, C., Oskarsson, T., Padua, D., Wang, Q., Bos, P. D., et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature, 451(7175), 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song, G., Zhang, Y., & Wang, L. (2009). MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. The Journal of Biological Chemistry, 284(46), 31921–31927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2011). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380), 190–194.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang, Y., Yang, P., Sun, T., Li, D., Xu, X., Rui, Y., et al. (2013). MiR-126 and miR-126* repress recruitment of mesenchymal stem cells and inflammatory monocytes to inhibit breast cancer metastasis. Nature Cell Biology, 15(3), 284–294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, H., Patel, M. R., Prescher, J. A., Patsialou, A., Qian, D., Lin, J., et al. (2010). Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proceedings of the National Academy of Sciences of the United States of America, 107(42), 18115–18120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Malanchi, I., Santamaria-Martinez, A., Susanto, E., Peng, H., Lehr, H. A., Delaloye, J. F., et al. (2011). Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 481(7379), 85–89.

    Article  PubMed  CAS  Google Scholar 

  64. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., et al. (2007). Let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell, 131(6), 1109–1123.

    Article  CAS  PubMed  Google Scholar 

  66. Dangi-Garimella, S., Yun, J., Eves, E. M., Newman, M., Erkeland, S. J., Hammond, S. M., et al. (2009). Raf kinase inhibitory protein suppresses a metastasis signalling cascade involving LIN28 and let-7. The EMBO Journal, 28(4), 347–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yun, J., Frankenberger, C. A., Kuo, W. L., Boelens, M. C., Eves, E. M., Cheng, N., et al. (2011). Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. The EMBO Journal, 30(21), 4500–4514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu, C., Kelnar, K., Liu, B., Chen, X., Calhoun-Davis, T., Li, H., et al. (2011). The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nature Medicine, 17(2), 211–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu, C., Liu, R., Zhang, D., Deng, Q., Liu, B., Chao, H. P., et al. (2017). MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes. Nature Communications, 8, 14270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S., & Yang, J. (2012). Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell, 22(6), 725–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tsai, J. H., & Yang, J. (2013). Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes & Development, 27(20), 2192–2206.

    Article  CAS  Google Scholar 

  72. Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.

    Article  CAS  PubMed  Google Scholar 

  73. Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & Development, 22(7), 894–907.

    Article  CAS  Google Scholar 

  74. Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Reports, 9(6), 582–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gregory, P. A., Bracken, C. P., Smith, E., Bert, A. G., Wright, J. A., Roslan, S., et al. (2011). An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Molecular Biology of the Cell, 22(10), 1686–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang, P., Wang, L., Rodriguez-Aguayo, C., Yuan, Y., Debeb, B. G., Chen, D., et al. (2014). MiR-205 acts as a tumour radiosensitizer by targeting ZEB1 and Ubc13. Nature Communications, 5, 5671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gibbons, D. L., Lin, W., Creighton, C. J., Rizvi, Z. H., Gregory, P. A., Goodall, G. J., et al. (2009). Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes & Development, 23(18), 2140–2151.

    Article  CAS  Google Scholar 

  78. Dykxhoorn, D. M., Wu, Y., Xie, H., Yu, F., Lal, A., Petrocca, F., et al. (2009). MiR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One, 4(9), e7181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Korpal, M., Ell, B. J., Buffa, F. M., Ibrahim, T., Blanco, M. A., Celia-Terrassa, T., et al. (2011). Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nature Medicine, 17(9), 1101–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chou, J., Lin, J. H., Brenot, A., Kim, J. W., Provot, S., & Werb, Z. (2013). GATA3 suppresses metastasis and modulates the tumour microenvironment by regulating microRNA-29b expression. Nature Cell Biology, 15(2), 201–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A microRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.

    Article  CAS  PubMed  Google Scholar 

  82. Chen, D., Sun, Y., Yuan, Y., Han, Z., Zhang, P., Zhang, J., et al. (2014). MiR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genetics, 10(2), e1004177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Song, S. J., Poliseno, L., Song, M. S., Ala, U., Webster, K., Ng, C., et al. (2013). MicroRNA-antagonism regulates breast cancer stemness and metastasis via TET-family-dependent chromatin remodeling. Cell, 154(2), 311–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Krzeszinski, J. Y., Wei, W., Huynh, H., Jin, Z., Wang, X., Chang, T. C., et al. (2014). MiR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature, 512(7515), 431–435.

    Article  CAS  PubMed  Google Scholar 

  85. Ell, B., Mercatali, L., Ibrahim, T., Campbell, N., Schwarzenbach, H., Pantel, K., et al. (2013). Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell, 24(4), 542–556.

    Article  CAS  PubMed  Google Scholar 

  86. Singh, R., Pochampally, R., Watabe, K., Lu, Z., & Mo, Y. Y. (2014). Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Molecular Cancer, 13, 256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhuang, G., Wu, X., Jiang, Z., Kasman, I., Yao, J., Guan, Y., et al. (2012). Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. The EMBO Journal, 31(17), 3513–3523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhou, W., Fong, M. Y., Min, Y., Somlo, G., Liu, L., Palomares, M. R., et al. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25(4), 501–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fong, M. Y., Zhou, W., Liu, L., Alontaga, A. Y., Chandra, M., Ashby, J., et al. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology, 17(2), 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W. C., et al. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527(7576), 100–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Merritt, W. M., Lin, Y. G., Han, L. Y., Kamat, A. A., Spannuth, W. A., Schmandt, R., et al. (2008). Dicer, Drosha, and outcomes in patients with ovarian cancer. The New England Journal of Medicine, 359(25), 2641–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Torres, A., Torres, K., Paszkowski, T., Jodlowska-Jedrych, B., Radomanski, T., Ksiazek, A., et al. (2011). Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer. Tumour Biology, 32(4), 769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rupaimoole, R., Ivan, C., Yang, D., Gharpure, K. M., Wu, S. Y., Pecot, C. V., et al. (2016). Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression. Oncogene, 35(33), 4312–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Su, X., Chakravarti, D., Cho, M. S., Liu, L., Gi, Y. J., Lin, Y. L., et al. (2010). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature, 467(7318), 986–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van den Beucken, T., Koch, E., Chu, K., Rupaimoole, R., Prickaerts, P., Adriaens, M., et al. (2014). Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nature Communications, 5, 5203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Shen, J., Xia, W., Khotskaya, Y. B., Huo, L., Nakanishi, K., Lim, S. O., et al. (2013). EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature, 497(7449), 383–387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Salmena, L., Poliseno, L., Tay, Y., Kats, L., & Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3), 353–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bosson, A. D., Zamudio, J. R., & Sharp, P. A. (2014). Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Molecular Cell, 56(3), 347–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P., & Stoffel, M. (2014). Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Molecular Cell, 54(5), 766–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J., & Pandolfi, P. P. (2010). A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465(7301), 1033–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Karreth, F. A., Tay, Y., Perna, D., Ala, U., Tan, S. M., Rust, A. G., et al. (2011). In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147(2), 382–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147(2), 344–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Baochau Ton for critical reading of the manuscript. The authors’ research is supported by the US National Institutes of Health grants R01CA166051 and R01CA181029, a Cancer Prevention and Research Institute of Texas grant RP150319, and a Stand Up To Cancer Innovative Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yutong Sun or Li Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Yao, F., Xiao, Z. et al. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev 37, 5–15 (2018). https://doi.org/10.1007/s10555-017-9712-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9712-y

Keywords

Navigation