Skip to main content

Advertisement

Log in

Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Protein ubiquitination and deubiquitination participate in a number of biological processes, including cell growth, differentiation, transcriptional regulation, and oncogenesis. Ubiquitin C-terminal hydrolases (UCHs), a subfamily of deubiquitinating enzymes (DUBs), includes four members: UCH-L1/PGP9.5 (protein gene product 9.5), UCH-L3, UCHL5/UCH37, and BRCA1-associated protein-1 (BAP1). Recently, more attention has been paid to the relationship between the UCH family and malignancies, which play different roles in the progression of different tumors. It remains controversial whether UCHL1 is a tumor promoter or suppressor. UCHL3 and UCH37 are considered to be tumor promoters, while BAP1 is considered to be a tumor suppressor. Studies have showed that UCH enzymes influence several signaling pathways that play crucial roles in oncogenesis, tumor invasion, and migration. In addition, UCH families are associated with tumor cell sensitivity to therapeutic modalities. Here, we reviewed the roles of UCH enzymes in the development of tumors, highlighting the potential consideration of UCH enzymes as new interesting targets for the development of anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid-β peptides

AD:

Alzheimer’s disease

BAP1:

BRCA1-associated protein-1

BARD1:

BRCA1-associated RING domain 1

CDCA2:

Cell division cycle-associated 2

CG:

Cortical granule

CKD:

Cyclin-dependent kinases

DDR:

DNA damage response

DFS:

Disease-free survival

di-Ub:

Dimers-ubiquitin

DSBs:

Double-strand breaks

DUBs:

Deubiquitinating enzymes

E2F1:

E2 promoter binding factor 1

EMT:

Epithelial-to-mesenchymal transition

EOC:

Epithelial ovarian cancer

ESCC:

Esophageal squamous cell carcinoma

gad:

Gracile axonal dystrophy

GRP78:

Glucose-regulated protein 78

HBM:

HCF1 binding domain

HCC:

Hepatocellular carcinoma

HCF1:

Host cell factor 1

HDAC:

Histone deacetylase

HIF-1:

Hypoxia-inducible factor 1

hINO80:

Human Ino80 chromatin-remodeling complex

HR:

Proper homologous recombination

IFI27:

Interferon inducible protein 27

JAB1:

Jun activation domain-binding protein-1

JAMM:

Jab1/MPN domain-associated metalloisopeptidase

MJDs:

Josephin or Machado-Joseph disease protein domain proteases

mono-Ub:

Mono-ubiquitin

NF-κB:

Nuclear factor-κB

NFRKB:

Nuclear factor related to κB

NLS:

Nuclear localization signals

NOX4:

NADPH oxidase 4

OGT:

O-linked N-acetylglucosamine transferase

OS:

Overall survival

OTUs:

Ovarian tumor proteases

PD:

Parkinson’s disease

PGP9.5:

Protein gene product 9.5

PRCs:

Polycomb-repressive complexes

PR-DUB:

Polycomb group repressive deubiquitinase complex

RCC:

Renal clear cell carcinoma

ROS:

Reactive oxygen species

Smurf2:

Smad ubiquitination regulatory factor 2

TGF-β:

Transforming growth factor-β

Ub:

Ubiquitin

UCHs:

Ubiquitin C-terminal hydrolases

UPP:

Ubiquitin-dependent proteasome degradation pathway

USPs/UBPs:

Ubiquitin-specific proteases/ubiquitin-specific processing proteases

YY1:

Ying Yang 1

References

  1. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  PubMed  Google Scholar 

  2. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.

    Article  CAS  PubMed  Google Scholar 

  3. Finley, D., Ciechanover, A., & Varshavsky, A. (2004). Ubiquitin as a central cellular regulator. Cell, 116(Suppl. 2), S29–S32 2p following S32.

    Article  CAS  PubMed  Google Scholar 

  4. Komander, D., & Rape, M. (2012). The ubiquitin code. Annual Review of Biochemistry, 81, 203–229.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, J., & Nussinov, R. (2013). The role of allostery in the ubiquitin-proteasome system. Critical Reviews in Biochemistry and Molecular Biology, 48(2), 89–97.

    Article  CAS  PubMed  Google Scholar 

  6. Varshavsky, A. (2012). The ubiquitin system, an immense realm. Annual Review of Biochemistry, 81, 167–176.

    Article  CAS  PubMed  Google Scholar 

  7. Xu, G., & Jaffrey, S. R. (2011). The new landscape of protein ubiquitination. Nature Biotechnology, 29(12), 1098–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Welchman, R. L., Gordon, C., & Mayer, R. J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nature Reviews Molecular Cell Biology, 6(8), 599–609.

    Article  CAS  PubMed  Google Scholar 

  9. Neutzner, M., & Neutzner, A. (2012). Enzymes of ubiquitination and deubiquitination. Essays in Biochemistry, 52, 37–50.

    Article  CAS  PubMed  Google Scholar 

  10. Singhal, S., Taylor, M. C., & Baker, R. T. (2008). Deubiquitylating enzymes and disease. BMC Biochemistry, 9(Suppl. 1), S3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Katz, E. J., Isasa, M., & Crosas, B. (2010). A new map to understand deubiquitination. Biochemical Society Transactions, 38(Pt 1), 21–28.

    Article  CAS  PubMed  Google Scholar 

  12. Sridhar, V. V., Kapoor, A., Zhang, K., Zhu, J., Zhou, T., Hasegawa, P. M., et al. (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature, 477(7145), 735–738.

    Article  CAS  Google Scholar 

  13. Liu, H., Buus, R., Clague, M. J., & Urbe, S. (2009). Regulation of ErbB2 receptor status by the proteasomal DUB POH1. PLoS One, 4(5), e5544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397.

    Article  CAS  PubMed  Google Scholar 

  15. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123(5), 773–786.

    Article  CAS  PubMed  Google Scholar 

  16. Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138(2), 389–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Amerik, A. Y., & Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta, 1695(1–3), 189–207.

    Article  CAS  PubMed  Google Scholar 

  18. Soboleva, T. A., & Baker, R. T. (2004). Deubiquitinating enzymes: their functions and substrate specificity. Current Protein & Peptide Science, 5(3), 191–200.

    Article  CAS  Google Scholar 

  19. Lam, Y. A., Xu, W., DeMartino, G. N., & Cohen, R. E. (1997). Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature, 385(6618), 737–740.

    Article  CAS  PubMed  Google Scholar 

  20. Larsen, C. N., Krantz, B. A., & Wilkinson, K. D. (1998). Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry, 37(10), 3358–3368.

    Article  CAS  PubMed  Google Scholar 

  21. Doran, J. F., Jackson, P., Kynoch, P. A., & Thompson, R. J. (1983). Isolation of PGP 9.5, a new human neurone-specific protein detected by high-resolution two-dimensional electrophoresis. Journal of Neurochemistry, 40(6), 1542–1547.

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson, K. D., Lee, K. M., Deshpande, S., Duerksen-Hughes, P., Boss, J. M., & Pohl, J. (1989). The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science, 246(4930), 670–673.

    Article  CAS  PubMed  Google Scholar 

  23. Jensen, D. E., Proctor, M., Marquis, S. T., Gardner, H. P., Ha, S. I., Chodosh, L. A., et al. (1998). BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene, 16(9), 1097–1112.

    Article  CAS  PubMed  Google Scholar 

  24. Todi, S. V., & Paulson, H. L. (2011). Balancing act: deubiquitinating enzymes in the nervous system. Trends in Neurosciences, 34(7), 370–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Day, I. N., & Thompson, R. J. (1987). Molecular cloning of cDNA coding for human PGP 9.5 protein. A novel cytoplasmic marker for neurones and neuroendocrine cells. FEBS Letters, 210(2), 157–160.

    Article  CAS  PubMed  Google Scholar 

  26. Das, C., Hoang, Q. Q., Kreinbring, C. A., Luchansky, S. J., Meray, R. K., Ray, S. S., et al. (2006). Structural basis for conformational plasticity of the Parkinson’s disease-associated ubiquitin hydrolase UCH-L1. Proceedings of the National Academy of Sciences USA, 103(12), 4675–4680.

    Article  CAS  Google Scholar 

  27. Zhou, Z. R., Zhang, Y. H., Liu, S., Song, A. X., & Hu, H. Y. (2012). Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochemical Journal, 441(1), 143–149.

    Article  CAS  PubMed  Google Scholar 

  28. Johnston, S. C., Larsen, C. N., Cook, W. J., Wilkinson, K. D., & Hill, C. P. (1997). Crystal structure of a deubiquitinating enzyme (human UCH-L3) at 1.8A° resolution. EMBO Journal, 16(13), 3787–3796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hirayama, K., Aoki, S., Nishikawa, K., Matsumoto, T., & Wada, K. (2007). Identification of novel chemical inhibitors for ubiquitin C-terminal hydrolase-L3 by virtual screening. Bioorganic and Medicinal Chemistry, 15(21), 6810–6818.

    Article  CAS  PubMed  Google Scholar 

  30. Navarro, M. F., Carmody, L., Romo-Fewell, O., Lokensgard, M. E., & Love, J. J. (2014). Characterizing substrate selectivity of ubiquitin C-terminal hydrolase-L3 using engineered α-linked ubiquitin substrates. Biochemistry, 53(51), 8031–8042.

    Article  CAS  PubMed  Google Scholar 

  31. Nishio, K., Kim, S. W., Kawai, K., Mizushima, T., Yamane, T., et al. (2009). Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochemical and Biophysical Research Communications, 390(3), 855–860.

    Article  CAS  PubMed  Google Scholar 

  32. Yao, T., Song, L., Xu, W., DeMartino, G. N., Florens, L., Swanson, S. K., et al. (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nature Cell Biology, 8(9), 994–1002.

    Article  CAS  PubMed  Google Scholar 

  33. Burgie, S. E., Bingman, C. A., Soni, A. B., & Phillips Jr., G. N. (2012). Structural characterization of human Uch37. Proteins, 80(2), 649–654.

    Article  CAS  PubMed  Google Scholar 

  34. Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., et al. (1998). The ubiquitin pathway in Parkinson's disease. Nature, 395(6701), 451–452.

    Article  CAS  PubMed  Google Scholar 

  35. Osaka, H., Wang, Y. L., Takada, K., Takizawa, S., Setsuie, R., Li, H., et al. (2003). Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 12(16), 1945–1958.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z., & Lansbury Jr., P. T. (2002). The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell, 111(2), 209–218.

    Article  CAS  PubMed  Google Scholar 

  37. Hemelaar, J., Borodovsky, A., Kessler, B. M., Reverter, D., Cook, J., Kolli, N., et al. (2004). Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Molecular and Cellular Biology, 24(1), 84–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grou, C. P., Pinto, M. P., Mendes, A. V., Domingues, P., & Azevedo, J. E. (2015). The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Scientific Reports, 5, 12836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frickel, E. M., Quesada, V., Muething, L., Gubbels, M. J., Spooner, E., Ploegh, H., et al. (2007). Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cellular Microbiology, 9(6), 1601–1610.

    Article  CAS  PubMed  Google Scholar 

  40. Misaghi, S., Galardy, P. J., Meester, W. J., Ovaa, H., Ploegh, H. L., & Gaudet, R. (2005). Structure of the ubiquitin hydrolase UCH-L3 complexed with a suicide substrate. Journal of Biological Chemistry, 280(2), 1512–1520.

    Article  CAS  PubMed  Google Scholar 

  41. Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., et al. (2008). Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 453(7194), 481–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schreiner, P., Chen, X., Husnjak, K., Randles, L., Zhang, N., Elsasser, S., et al. (2008). Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature, 453(7194), 548–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. VanderLinden, R. T., Hemmis, C. W., Schmitt, B., Ndoja, A., Whitby, F. G., Robinson, H., et al. (2015). Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Molecular Cell, 57(5), 901–911.

    Article  CAS  Google Scholar 

  44. Jiao, L., Ouyang, S., Shaw, N., Song, G., Feng, Y., Niu, F., et al. (2014). Mechanism of the Rpn13-induced activation of Uch37. Protein & Cell, 5(8), 616–630.

    Article  CAS  Google Scholar 

  45. Ventii, K. H., Devi, N. S., Friedrich, K. L., Chernova, T. A., Tighiouart, M., Van Meir, E. G., et al. (2008). BRCA1-associated protein 1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Research, 68(17), 6953–6962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Okino, Y., Machida, Y., Frankland-Searby, S., & Machida, Y. J. (2015). BRCA1-associated protein 1 (BAP1) deubiquitinase antagonizes the ubiquitin-mediated activation of FoxK2 target genes. Journal of Biological Chemistry, 290(3), 1580–1591.

    Article  PubMed  CAS  Google Scholar 

  47. Misaghi, S., Ottosen, S., Izrael-Tomasevic, A., Arnott, D., Lamkanfi, M., Lee, J., et al. (2009). Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Molecular and Cellular Biology, 29(8), 2181–2192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carbone, M., Yang, H., Pass, H. I., Krausz, T., Testa, J. R., & Gaudino, G. (2013). BAP1 and cancer. Nature Reviews Cancer, 13(3), 153–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mallery, D. L., Vandenberg, C. J., & Hiom, K. (2002). Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO Journal, 21(24), 6755–6762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Choi, J., Levey, A. I., Weintraub, S. T., Rees, H. D., Gearing, M., Chin, L. S., et al. (2004). Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. Journal Biological Chemistry, 279(13), 13256–13264.

    Article  CAS  Google Scholar 

  51. Son, O. L., Kim, H. T., Ji, M. H., Yoo, K. W., Rhee, M., & Kim, C. H. (2003). Cloning and expression analysis of a Parkinson's disease gene, Uch-L1, and its promoter in zebrafish. Biochemical and Biophysical Research Communications, 312(3), 601–607.

    Article  CAS  PubMed  Google Scholar 

  52. Barrachina, M., Castano, E., Dalfo, E., Maes, T., Buesa, C., & Ferrer, I. (2006). Reduced ubiquitin C-terminal hydrolase-1 expression levels in dementia with Lewy bodies. Neurobiology of Disease, 22(2), 265–273.

    Article  CAS  PubMed  Google Scholar 

  53. Gong, B., Cao, Z., Zheng, P., Vitolo, O. V., Liu, S., Staniszewski, A., et al. (2006). Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell, 126(4), 775–788.

    Article  CAS  PubMed  Google Scholar 

  54. Cartier, A. E., Djakovic, S. N., Salehi, A., Wilson, S. M., Masliah, E., & Patrick, G. N. (2009). Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1. Journal of Neuroscience, 29(24), 7857–7868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lederer, C. W., Torrisi, A., Pantelidou, M., Santama, N., & Cavallaro, S. (2007). Pathways and genes differentially expressed in the motor cortex of patients with sporadic amyotrophic lateral sclerosis. BMC Genomics, 8, 26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lakshmana, M. K., Chung, J. Y., Wickramarachchi, S., Tak, E., Bianchi, E., Koo, E. H., et al. (2010). A fragment of the scaffolding protein RanBP9 is increased in Alzheimer’s disease brains and strongly potentiates amyloidbeta peptide generation. FASEB Journal, 24(1), 119–127.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Zhou, Y., Gu, G., Goodlett, D. R., Zhang, T., Pan, C., Montine, T. J., et al. (2004). Analysis of alpha-synuclein-associated proteins by quantitative proteomics. Journal of Biological Chemistry, 279(37), 39155–39164.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, M., Deng, Y., Luo, Y., Zhang, S., Zou, H., Cai, F., et al. (2012). Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. Journal of Neurochemistry, 120(6), 1129–1138.

    CAS  PubMed  Google Scholar 

  59. Guglielmotto, M., Monteleone, D., Boido, M., Piras, A., Giliberto, L., Borghi, R., et al. (2012). Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation. Aging Cell, 11(5), 834–844.

    Article  CAS  PubMed  Google Scholar 

  60. Carmine Belin, A., Westerlund, M., Bergman, O., Nissbrandt, H., Lind, C., Sydow, O., et al. (2007). S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism & Related Disorders, 13(5), 295–298.

    Article  Google Scholar 

  61. Sun, S., Zhao, Y., Jin, G., & Kang, H. (2014). Lack of association between UCHL1 S18Y gene polymorphism and Parkinson's disease in the Asian population: a meta-analysis. Neurological Sciences, 35(12), 1867–1876.

    Article  PubMed  Google Scholar 

  62. Bishop, P., Rocca, D., & Henley, J. M. (2016). Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. The Biochemical Journal, 473(16), 2453–2462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mandelker, D. L., Yamashita, K., Tokumaru, Y., Mimori, K., Howard, D. L., Tanaka, Y., et al. (2005). PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Research, 65(11), 4963–4968.

    Article  CAS  PubMed  Google Scholar 

  64. Yamashita, K., Park, H. L., Kim, M. S., Osada, M., Tokumaru, Y., Inoue, H., et al. (2006). PGP9.5 methylation in diffusetype gastric cancer. Cancer Research, 66(7), 3921–3927.

    Article  CAS  PubMed  Google Scholar 

  65. Wang, G., Zhang, W., Zhou, B., Jin, C., Wang, Z., Yang, Y., et al. (2015). The diagnosis value of promoter methylation of UCHL1 in the serum for progression of gastric cancer. BioMed Research International, 2015, 741030.

    PubMed  PubMed Central  Google Scholar 

  66. Kagara, I., Enokida, H., Kawakami, K., Matsuda, R., Toki, K., Nishimura, H., et al. (2008). CpG hypermethylation of the UCHL1 gene promoter is associated with pathogenesis and poor prognosis in renal cell carcinoma. The Joural of Urology, 180(1), 343–351.

    Article  CAS  Google Scholar 

  67. Seliger, B., Handke, D., Schabel, E., Bukur, J., Lichtenfels, R., & Dammann, R. (2009). Epigenetic control of the ubiquitin carboxyl terminal hydrolase 1 in renal cell carcinoma. Journal of Translational Medicine, 7, 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Wang, Y., Yu, Q., Cho, A. H., Rondeau, G., Welsh, J., Adamson, E., et al. (2005). Survey of differentially methylated promoters in prostate cancer cell lines. Neoplasia, 7(8), 748–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mitsui, Y., Shiina, H., Hiraki, M., Arichi, N., Hiraoka, T., Sumura, M., et al. (2012). Tumor suppressor function of PGP9.5 is associated with epigenetic regulation in prostate cancer--novel predictor of biochemical recurrence after radical surgery. Cancer Epidemiol Biomarkers Prevention, 21(3), 487–496.

    Article  CAS  Google Scholar 

  70. Tokumaru, Y., Yamashita, K., Kim, M. S., Park, H. L., Osada, M., Mori, M., et al. (2008). The role of PGP9.5 as a tumor suppressor gene in human cancer. Internation Journal of Cancer, 123(4), 753–759.

    Article  CAS  Google Scholar 

  71. Yu, J., Tao, Q., Cheung, K. F., Jin, H., Poon, F. F., Wang, X., et al. (2008). Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology, 48(2), 508–518.

    Article  CAS  PubMed  Google Scholar 

  72. Okochi-Takada, E., Nakazawa, K., Wakabayashi, M., Mori, A., Ichimura, S., Yasugi, T., et al. (2006). Silencing of the UCHL1 gene in human colorectal and ovarian cancers. Internation Journal of Cancer, 119(6), 1338–1344.

    Article  CAS  Google Scholar 

  73. Brait, M., Maldonado, L., Noordhuis, M. G., Begum, S., Loyo, M., et al. (2013). Association of promoter methylation of VGF and PGP9.5 with ovarian cancer progression. PLoS One, 8(9), e70878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, L., Tao, Q., Jin, H., van Hasselt, A., Poon, F. F., et al. (2010). The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clinical Cancer Research, 16(11), 2949–2958.

    Article  CAS  PubMed  Google Scholar 

  75. Fukutomi, S., Seki, N., Koda, K., & Miyazaki, M. (2007). Identification of methylation-silenced genes in colorectal cancer cell lines: Genomic screening using oligonucleotide arrays. Scandinavian Journal of Gastroenterology, 42(12), 1486–1494.

    Article  CAS  PubMed  Google Scholar 

  76. Mizukami, H., Shirahata, A., Goto, T., Sakata, M., Saito, M., et al. (2008). PGP9.5 methylation as a marker for metastatic colorectal cancer. Anticancer Research, 28(5A), 2697–2700.

    CAS  PubMed  Google Scholar 

  77. Abdelmaksoud-Dammak, R., Saadallah-Kallel, A., Miladi-Abdennadher, I., Ayedi, L., Khabir, A., et al. (2016). CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) and P53 mutation pattern in sporadic colorectal cancer. Tumour Biology, 37(2), 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  78. Hibi, K., Liu, Q., Beaudry, G. A., Madden, S. L., Westra, W. H., Wehage, S. L., et al. (1998). Serial analysis of gene expression in non-small cell lung cancer. Cancer Research, 58(24), 5690–5694.

    CAS  PubMed  Google Scholar 

  79. Kusakabe, M., Kutomi, T., Watanabe, K., Emoto, N., Aki, N., et al. (2010). Identification of G0S2 as a gene frequently methylated in squamous lung cancer by combination of in silico and experimental approaches. Internation Journal of Cancer, 126(8), 1895–1902.

    CAS  Google Scholar 

  80. Trifa, F., Karray-Chouayekh, S., Jmaa, Z. B., Jmal, E., Khabir, A., et al. (2013). Frequent CpG methylation of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) in sporadic and hereditary Tunisian breast cancer patients: clinical significance. Medical Oncology, 30(1), 418.

    Article  PubMed  CAS  Google Scholar 

  81. Lien, H. C., Wang, C. C., Lin, C. H., Lu, Y. S., Huang, C. S., et al. (2013). Differential expression of ubiquitin carboxy-terminal hydrolase L1 in breast carcinoma and its biological significance. Human Pathology, 44(9), 1838–1848.

    Article  CAS  PubMed  Google Scholar 

  82. Lien, H. C., Wang, C. C., Huang, C. S., Yang, Y. W., Kuo, W. H., et al. (2013). Ubiquitin carboxy-terminal hydrolase L1 may be involved in the development of mammary phyllodes tumors. Virchows Archiv, 462(2), 155–161.

    Article  CAS  PubMed  Google Scholar 

  83. Jin, Y., Zhang, W., Xu, J., Wang, H., Zhang, Z., et al. (2015). UCH-L1 involved in regulating the degradation of EGFR and promoting malignant properties in drug-resistant breast cancer. International Journal of Clinicl and Experimental Pathology, 8(10), 12500–12508.

    Google Scholar 

  84. Mastoraki, A., Ioannidis, E., Patsouris, E., Safioleas, M., & Aroni, K. (2009). PGP 9.5 expression in cutaneous keratoacanthomas and squamous cell carcinomas. Archives of Dermatological Research, 301(9), 653–658.

    Article  CAS  PubMed  Google Scholar 

  85. Mastoraki, A., Ioannidis, E., Apostolaki, A., Patsouris, E., & Aroni, K. (2009). PGP 9.5 and cyclin D1 coexpression in cutaneous squamous cell carcinomas. International Journal of Surgical Pathology, 17(6), 413–420.

    Article  CAS  PubMed  Google Scholar 

  86. Takano, T., Miyauchi, A., Matsuzuka, F., Yoshida, H., Nakata, Y., Kuma, K., et al. (2004). PGP9.5 mRNA could contribute to the molecular-based diagnosis of medullary thyroid carcinoma. European Journal of Cancer, 40(4), 614–618.

    Article  CAS  PubMed  Google Scholar 

  87. Howell, V. M., Gill, A., Clarkson, A., Nelson, A. E., Dunne, R., Delbridge, L. W., et al. (2009). Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. Journal of Clinical Endocrinology and Metabolism, 94(2), 434–441.

    Article  CAS  PubMed  Google Scholar 

  88. Truran, P. P., Johnson, S. J., Bliss, R. D., Lennard, T. W., & Aspinall, S. R. (2014). Parafibromin, galectin-3, PGP9.5, Ki67, and cyclin D1: using an immunohistochemical panel to aid in the diagnosis of parathyroid cancer. World Journal of Surgery, 38(11), 2845–2854.

    Article  PubMed  Google Scholar 

  89. Wulfänger, J., Biehl, K., Tetzner, A., Wild, P., Ikenberg, K., Meyer, S., et al. (2013). Heterogeneous expression and functional relevance of the ubiquitin carboxyl-terminal hydrolase L1 in melanoma. International Journal of Cancer, 133(11), 2522–2532.

    PubMed  Google Scholar 

  90. Kim, H. J., Magesh, V., Lee, J. J., Kim, S., Knaus, U. G., & Lee, K. J. (2015). Ubiquitin C-terminal hydrolase-L1 increases cancer cell invasion by modulating hydrogen peroxide generated via NADPH oxidase 4. Oncotarget, 6(18), 16287–16303.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liu, X., Zeng, B., Ma, J., & Wan, C. (2009). Comparative proteomic analysis of osteosarcoma cell and human primary cultured osteoblastic cell. Cancer Investigation, 27(3), 345–352.

    Article  CAS  PubMed  Google Scholar 

  92. Zheng, S., Qiao, G., Min, D., Zhang, Z., Lin, F., Yang, Q., et al. (2015). Heterogeneous expression and biological function of ubiquitin carboxy-terminal hydrolase-L1 in osteosarcoma. Cancer Letters, 359(1), 36–46.

    Article  CAS  PubMed  Google Scholar 

  93. Hibi, K., Kodera, Y., Ito, K., Akiyama, S., Shirane, M., & Nakao, A. (2004). Plasminogen activator inhibitor-1 is a downstream mediator of the PGP9.5-related oncogenic pathway in esophageal squamous cell carcinoma. Anticancer Research, 24(6), 3731–3734.

    CAS  PubMed  Google Scholar 

  94. Mizukami, H., Goto, T., Kitamura, Y., Sakata, M., Saito, M., Ishibashi, K., et al. (2009). PGP9.5 was less frequently methylated in advanced gastric carcinoma. Hepato-Gastroenterology, 56(94–95), 1576–1579.

    CAS  PubMed  Google Scholar 

  95. Yang, H., Zhang, C., Fang, S., Ou, R., Li, W., & Xu, Y. (2015). UCH-LI acts as a novel prognostic biomarker in gastric cardiac adenocarcinoma. International Journal of Clinicl and Experimental Pathology, 8(11), 13957–13967.

    CAS  Google Scholar 

  96. Gu, Y. Y., Yang, M., Zhao, M., Luo, Q., Yang, L., Peng, H., et al. (2015). The de-ubiquitinase UCHL1 promotes gastric cancer metastasis via the Akt and Erk1/2 pathways. Tumour Biology, 36(11), 8379–8387.

    Article  CAS  PubMed  Google Scholar 

  97. Orr, K. S., Shi, Z., Brown, W. M., O'Hagan, K. A., Lappin, T. R., Maxwell, P., et al. (2011). Potential prognostic marker ubiquitin carboxyl-terminal hydrolase-L1 does not predict patient survival in non-small cell lung carcinoma. Journal of Experimental and Clinical Cancer Research, 30, 79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Akishima-Fukasawa, Y., Ino, Y., Nakanishi, Y., Miura, A., Moriya, Y., Kondo, T., et al. (2010). Significance of PGP9.5 expression in cancer-associated fibroblasts for prognosis of colorectal carcinoma. American Journal of Clinical Pathology, 134(1), 71–79.

    Article  CAS  PubMed  Google Scholar 

  99. Ma, Y., Zhao, M., Zhong, J., Shi, L., Luo, Q., Liu, J., et al. (2010). Proteomic profiling of proteins associated with lymph node metastasis in colorectal cancer. Journal of Cellular Biochemistry, 110(6), 1512–1519.

    Article  CAS  PubMed  Google Scholar 

  100. Zhong, J., Zhao, M., Ma, Y., Luo, Q., Liu, J., Wang, J., et al. (2012). UCHL1 acts as a colorectal cancer oncogene via activation of the β-catenin/TCF pathway through its deubiquitinating activity. International Journal of Molecular Medicine, 30(2), 430–436.

    Article  CAS  PubMed  Google Scholar 

  101. Hussain, S., Foreman, O., Perkins, S. L., Witzig, T. E., Miles, R. R., van Deursen, J., et al. (2010). The de-ubiquitinase UCH-L1 is an oncogene that drives the development of lymphoma in vivo by deregulating PHLPP1 and Akt signaling. Leukemia, 24(9), 1641–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goto, Y., Zeng, L., Yeom, C. J., Zhu, Y., Morinibu, A., Shinomiya, K., et al. (2015). UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF-1α. Nature Communications, 6, 6153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bheda, A., Yue, W., Gullapalli, A., Whitehurst, C., Liu, R., Pagano, J. S., et al. (2009). Positive reciprocal regulation of ubiquitin C-terminal hydrolase L1 and β-catenin/TCF signaling. PLoS One, 4(6), e5955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Caballero, O. L., Resto, V., Patturajan, M., Meerzaman, D., Guo, M. Z., Engles, J., et al. (2002). Interaction and colocalization of PGP9.5 with JAB1 and p27(Kip1). Oncogene, 21(19), 3003–3010.

    Article  CAS  PubMed  Google Scholar 

  105. Takami, Y., Nakagami, H., Morishita, R., Katsuya, T., Cui, T. X., Ichikawa, T., et al. (2007). Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-kappaB activation. Arteriosclerosis Thrombosis and Vascular Biology, 27(10), 2184–2190.

    Article  CAS  Google Scholar 

  106. Ichikawa, T., Li, J., Dong, X., Potts, J. D., Tang, D. Q., Li, D. S., et al. (2010). Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNFalpha-mediated vascular smooth muscle cell proliferation via suppressing ERK activation. Biochemical and Biophysical Research Communications, 391(1), 852–856.

    Article  CAS  PubMed  Google Scholar 

  107. Sosna, J., Voigt, S., Mathieu, S., Kabelitz, D., Trad, A., Janssen, O., et al. (2013). The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Communication and Signaling, 11, 76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Karim, R., Tummers, B., Meyers, C., Biryukov, J. L., Alam, S., Backendorf, C., et al. (2013). Human papillomavirus (HPV) upregulates the cellular deubiquitinase UCHL1 to suppress the keratinocyte's innate immune response. PLoS Pathogens, 9(5), e1003384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang, H., Mao, X., Sun, Y., Hu, R., Luo, W., Zhao, Z., et al. (2015). NF-κB upregulates ubiquitin C-terminal hydrolase 1 in diseased podocytes in glomerulonephritis. Molecular Medicine Reports, 12(2), 2893–2901.

    Article  CAS  PubMed  Google Scholar 

  110. Kwon, J. (2007). The new function of two ubiquitin C-terminal hydrolase isozymes as reciprocal modulators of germ cell apoptosis. Experimental Animals, 56(2), 71–77.

    Article  CAS  PubMed  Google Scholar 

  111. Mtango, N. R., Sutovsky, M., Vandevoort, C. A., Latham, K. E., & Sutovsky, P. (2012). Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. Journal of Cellular Physiology, 227(5), 2022–2029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Yi, Y. J., Sutovsky, M., Song, W. H., & Sutovsky, P. (2015). Protein deubiquitination during oocyte maturation influences sperm function during fertilisation, antipolyspermy defense and embryo development. Reproduction Fertility and Development, 27(8), 1154–1167.

    Article  CAS  Google Scholar 

  113. Hennings, J. M., Zimmer, R. L., Nabli, H., Davis, J. W., Sutovsky, P., Sutovsky, M., et al. (2016). Improved murine blastocyst quality and development in a single culture medium compared to sequential culture media. Reproductive Sciences, 23(3), 310–317.

    Article  CAS  PubMed  Google Scholar 

  114. Miyoshi, Y., Nakayama, S., Torikoshi, Y., Tanaka, S., Ishihara, H., Taguchi, T., et al. (2006). High expression of ubiquitin carboxy-terminal hydrolase-L1 and -L3 mRNA predicts early recurrence in patients with invasive breast cancer. Cancer Science, 97(6), 523–529.

    Article  CAS  PubMed  Google Scholar 

  115. Luo, K., Li, L., Li, Y., Wu, C., Yin, Y., Chen, Y., et al. (2016). A phosphorylation-deubiquitination cascade regulates the BRCA2-RAD51 axis in homologous recombination. Genes & Development, 30(23), 2581–2595.

    Article  CAS  Google Scholar 

  116. Song, H. M., Lee, J. E., & Kim, J. H. (2014). Ubiquitin C-terminal hydrolase-L3 regulates EMT process and cancer metastasis in prostate cell lines. Biochemical and Biophysical Research Communications, 452(3), 722–727.

    Article  CAS  PubMed  Google Scholar 

  117. Chiba, T., & Tanaka, K. (2004). Cullin-based ubiquitin ligase and its control by NEDD8-conjugating system. Current Protein and Peptide Science, 5(3), 177–184.

    Article  CAS  PubMed  Google Scholar 

  118. Lam, Y. A., DeMartino, G. N., Pickart, C. M., & Cohen, R. E. (1997). Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. Journal of Biological Chemistry, 272(45), 28438–28446.

    Article  CAS  PubMed  Google Scholar 

  119. Fang, Y., Fu, D., & Shen, X. Z. (2010). The potential role of ubiquitin c-terminal hydrolases in oncogenesis. Biochimica et Biophysica Acta, 1806(1), 1–6.

    CAS  PubMed  Google Scholar 

  120. Randles, L., Anchoori, R. K., Roden, R. B., & Walters, K. J. (2016). The proteasome ubiquitin receptor hRpn13 and its interacting deubiquitinating enzyme Uch37 are required for proper cell cycle progression. Journal of Biological Chemistry, 291(16), 8773–8783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yao, T., Song, L., Jin, J., Cai, Y., Takahashi, H., Swanson, M. P., et al. (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatinremodeling complex. Molecular Cell, 31(6), 909–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zediak, V. P., & Berger, S. L. (2008). Hit and run: Transient deubiquitylase activity in a chromatin-remodeling complex. Molecular Cell, 31(6), 773–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen, X., & Walters, K. J. (2015). Structural plasticity allows UCH37 to be primed by RPN13 or locked down by INO80G. Molecular Cell, 57(5), 767–768.

    Article  CAS  PubMed  Google Scholar 

  124. Cai, Y., Jin, J., Yao, T., Gottschalk, A. J., Swanson, S. K., Wu, S., et al. (2007). YY1 functions with INO80 to activate transcription. Nature Structural & Molecular Biology, 14(8), 872–874.

    Article  CAS  Google Scholar 

  125. Rolen, U., Kobzeva, V., Gasparjan, N., Ovaa, H., Winberg, G., Kisseljov, F., et al. (2006). Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Molecular Carcinogenesis, 45(4), 260–269.

    Article  CAS  PubMed  Google Scholar 

  126. Fang, Y., Fu, D., Tang, W., Cai, Y., Ma, D., Wang, H., et al. (2013). Ubiquitin C-terminal hydrolase 37, a novel predictor for hepatocellular carcinoma recurrence, promotes cell migration and invasion via interacting and deubiquitinating PRP19. Biochimica et Biophysica Acta, 1833(3), 559–572.

    Article  CAS  PubMed  Google Scholar 

  127. Chen, Y., Fu, D., Xi, J., Ji, Z., Liu, T., Ma, Y., et al. (2012). Expression and clinical significance of UCH37 in human esophageal squamous cell carcinoma. Digestive Diseases and Science, 57(9), 2310–2317.

    Article  CAS  Google Scholar 

  128. Wang, L., Chen, Y. J., Xu, K., Wang, Y. Y., Shen, X. Z., & Tu, R. Q. (2014). High expression of UCH37 is significantly associated with poor prognosis in human epithelial ovarian cancer. Tumour Biology, 35(11), 11427–11433.

    Article  CAS  PubMed  Google Scholar 

  129. Chen, Z., Niu, X., Li, Z., Yu, Y., Ye, X., Lu, S., et al. (2011). Effect of ubiquitin carboxy-terminal hydrolase 37 on apoptotic in A549 cells. Cell Biochemistry and Function, 29(2), 142–148.

    Article  PubMed  CAS  Google Scholar 

  130. Cutts, A. J., Soond, S. M., Powell, S., & Chantry, A. (2011). Early phase TGFβ receptor signalling dynamics stabilised by the deubiquitinase UCH37 promotes cell migratory responses. International Journal of Biochemistry & Cell Biology, 43(4), 604–612.

    Article  CAS  Google Scholar 

  131. Wicks, S. J., Haros, K., Maillard, M., Song, L., Cohen, R. E., Dijke, P. T., et al. (2005). The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-β signaling. Oncogene, 24(54), 8080–8084.

    Article  CAS  PubMed  Google Scholar 

  132. Wicks, S. J., Grocott, T., Haros, K., Maillard, M., ten Dijke, P., & Chantry, A. (2006). Reversible ubiquitination regulates the Smad/TGF-β signalling pathway. Biochemical Society Transactions, 34(Pt 5), 761–763.

    Article  CAS  PubMed  Google Scholar 

  133. Fang, Y., Mu, J., Ma, Y., Ma, D., Fu, D., & Shen, X. (2012). The interaction between ubiquitin C-terminal hydrolase 37 and glucose-regulated protein 78 in hepatocellular carcinoma. Molecular and Cellular Biochemistry, 359(1–2), 59–66.

    Article  CAS  PubMed  Google Scholar 

  134. Mahanic, C. S., Budhavarapu, V., Graves, J. D., Li, G., & Lin, W. C. (2015). Regulation of E2 promoter binding factor 1 (E2F1) transcriptional activity through a deubiquitinating enzyme, UCH37. Journal of Biological Chemistry, 290(44), 26508–26522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Han, W., Lee, H., & Han, J. K. (2017). Ubiquitin C-terminal hydrolase37 regulates Tcf7 DNA binding for the activation of Wnt signalling. Scientific Reports, 7, 42590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, Y. J., Ma, Y. S., Fang, Y., Wang, Y., Fu, D., & Shen, X. Z. (2013). Power and promise of ubiquitin carboxyl-terminal hydrolase 37 as a target of cancer therapy. Asian Pacific Journal of Cancer Prevention, 14(4), 2173–2179.

    Article  PubMed  Google Scholar 

  137. Harbour, J. W., Onken, M. D., Roberson, E. D., Duan, S., Cao, L., Worley, L. A., et al. (2010). Frequent mutation of BAP1 in metastasizing uveal melanomas. Science, 330(6009), 1410–1413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Testa, J. R., Cheung, M., Pei, J., Below, J. E., Tan, Y., Sementino, E., et al. (2011). Germline BAP1 mutations predispose to malignant mesothelioma. Nature Genetics, 43(10), 1022–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Joseph, N. M., Chen, Y. Y., Nasr, A., Yeh, I., Talevich, E., Onodera, C., et al. (2017). Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Modern Pathology, 30(2), 246–254.

    Article  CAS  PubMed  Google Scholar 

  140. Leblay, N., Leprêtre, F., Le Stang, N., Gautier-Stein, A., Villeneuve, L., Isaac, S., et al. (2017). BAP1 is altered by copy number loss, mutation, and/or loss of protein expression in more than 70% of malignant peritoneal mesotheliomas. Journal of Thoracic Oncology, 12(4), 724–733.

    Article  PubMed  Google Scholar 

  141. Wu, D., Hiroshima, K., Yusa, T., Ozaki, D., Koh, E., Sekine, Y., et al. (2017). Usefulness of p16/CDKN2A fluorescence in situ hybridization and BAP1 immunohistochemistry for the diagnosis of biphasic mesothelioma. Annals of Diagnostic Pathology, 26, 31–37.

    Article  PubMed  Google Scholar 

  142. McCroskey, Z., Staerkel, G., & Roy-Chowdhuri, S. (2017). Utility of BRCA1-associated protein 1 immunoperoxidase stain to differentiate benign versus malignant mesothelial proliferations in cytologic specimens. Diagnostic Cytopathology, 45(4), 312–319.

    Article  PubMed  Google Scholar 

  143. Hida, T., Hamasaki, M., Matsumoto, S., Sato, A., Tsujimura, T., Kawahara, K., et al. (2017). Immunohistochemical detection of MTAP and BAP1 protein loss for mesothelioma diagnosis: Comparison with 9p21 FISH and BAP1 immunohistochemistry. Lung Cancer, 104, 98–105.

    Article  PubMed  Google Scholar 

  144. Shah, A. A., Bourne, T. D., & Murali, R. (2013). BAP1 protein loss by immunohistochemistry: a potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology, 45(7), 651–656.

    Article  CAS  PubMed  Google Scholar 

  145. Kalirai, H., Dodson, A., Faqir, S., Damato, B. E., & Coupland, S. E. (2014). Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. British Journal of Cancer, 111(7), 1373–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Koopmans, A. E., Verdijk, R. M., Brouwer, R. W., van den Bosch, T. P., van den Berg, M. M., Vaarwater, J., et al. (2014). Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Modern Pathology, 27(10), 1321–1330.

    Article  CAS  PubMed  Google Scholar 

  147. van Essen, T. H., van Pelt, S. I., Versluis, M., Bronkhorst, I. H., van Duinen, S. G., Marinkovic, M., et al. (2014). Prognostic parameters in uveal melanoma and their association with BAP1 expression. British Journal of Ophthalmology, 98(12), 1738–1743.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kumar, R., Taylor, M., Miao, B., Ji, Z., Njauw, J. C., J€onsson, G., et al. (2015). BAP1 has a survival role in cutaneous melanoma. Journal of Investigative Dermatology, 135(4), 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  149. Jiao, Y., Pawlik, T. M., Anders, R. A., Selaru, F. M., Streppel, M. M., Lucas, D. J., et al. (2013). Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nature Genetics, 45(12), 1470–1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Simbolo, M., Fassan, M., Ruzzenente, A., Mafficini, A., Wood, L. D., Corbo, V., et al. (2014). Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups. Oncotarget, 5(9), 2839–2852.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Churi, C. R., Shroff, R., Wang, Y., Rashid, A., Kang, H. C., Weatherly, J., et al. (2014). Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS One, 9(12), e115383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Simbolo, M., Fassan, M., Mafficini, A., Lawlor, R. T., Ruzzenente, A., & Scarpa, A. (2016). New genomic landscapes and therapeutic targets for biliary tract cancers. Frontiers in Bioscience, 21, 707–718.

    Article  Google Scholar 

  153. Fan, L. H., Tang, L. N., Yue, L., Yang, Y., Gao, Z. L., & Shen, Z. (2012). BAP1 is a good prognostic factor in advanced non-small cell lung cancer. Clinical and Investigative Medicine, 35(4), E182–E189.

    Article  CAS  PubMed  Google Scholar 

  154. Andrici, J., Parkhill, T. R., Jung, J., Wardell, K. L., Verdonk, B., Singh, A., et al. (2016). Loss of expression of BAP1 is very rare in non-small cell lung carcinoma. Pathology, 48(4), 336–340.

    Article  CAS  PubMed  Google Scholar 

  155. Gossage, L., Murtaza, M., Slatter, A. F., Lichtenstein, C. P., Warren, A., Haynes, B., et al. (2014). Clinical and pathological impact of VHL, PBRM1, BAP1, SETD2, KDM6A, and JARID1c in clear cell renal cell carcinoma. Genes, Chromosomes & Cancer, 53(1), 38–51.

    Article  CAS  Google Scholar 

  156. Piva, F., Santoni, M., Matrana, M. R., Satti, S., Giulietti, M., Occhipinti, G., et al. (2015). BAP1, PBRM1 and SETD2 in clear-cell renal cell carcinoma: molecular diagnostics and possible targets for personalized therapies. Expert Review of Molecular Diagnostics, 15(9), 1201–1210.

    Article  CAS  PubMed  Google Scholar 

  157. Jensen, D. E., & Rauscher, F. J. (1999). Defining biochemical functions for the BRCA1 tumor suppressor protein: analysis of the BRCA1 binding protein BAP1. Cancer Letters, 143(Suppl. 1), S13–S17.

    Article  CAS  PubMed  Google Scholar 

  158. Coupier, I., Cousin, P. Y., Hughes, D., Legoix-Ne, P., Trehin, A., Sinilnikova, O. M., et al. (2005). BAP1 and breast cancer risk. Familial Cancer, 4(4), 273–277.

    Article  CAS  PubMed  Google Scholar 

  159. Tang, J., Xi, S., Wang, G., Wang, B., Yan, S., Wu, Y., et al. (2013). Prognostic significance of BRCA1-associated protein 1 in colorectal cancer. Medical Oncology, 30(2), 541.

    Article  PubMed  CAS  Google Scholar 

  160. Luchini, C., Veronese, N., Yachida, S., Cheng, L., Nottegar, A., Stubbs, B., et al. (2016). Different prognostic roles of tumor suppressor gene BAP1 in cancer: a systematic review with meta-analysis. Genes Chromosomes & Cancer, 55(10), 741–749.

    Article  CAS  Google Scholar 

  161. Farzin, M., Toon, C. W., Clarkson, A., Sioson, L., Watson, N., Andrici, J., et al. (2015). Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology, 47(4), 302–307.

    Article  CAS  PubMed  Google Scholar 

  162. Baumann, F., Flores, E., Napolitano, A., Kanodia, S., Taioli, E., Pass, H., et al. (2015). Mesothelioma patients with germline BAP1 mutations have 7-fold improved long-term survival. Carcinogenesis, 36(1), 76–81.

    Article  CAS  PubMed  Google Scholar 

  163. Xu, J., Kadariya, Y., Cheung, M., Pei, J., Talarchek, J., Sementino, E., et al. (2014). Germline mutation of Bap1 accelerates development of asbestos-induced malignant mesothelioma. Cancer Research, 74(16), 4388–4397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hwang, H. C., Pyott, S., Rodriguez, S., Cindric, A., Carr, A., Michelsen, C., et al. (2016). BAP1 immunohistochemistry and p16 FISH in the diagnosis of sarcomatous and desmoplastic mesotheliomas. American Journal of Surgical Pathology, 40(5), 714–718.

    Article  PubMed  Google Scholar 

  165. Cigognetti, M., Lonardi, S., Fisogni, S., Balzarini, P., Pellegrini, V., Tironi, A., et al. (2015). BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Modern Pathology, 28(8), 1043–1057.

    Article  CAS  PubMed  Google Scholar 

  166. O'Shea, S.J., Robles-Espinoza, C.D., McLellan, L., Harrigan, J., Jacq, X., Hewinson, J., et al. (2017). A population-based analysis of germline BAP1 mutations in melanoma. Human molecular genetics. Pii: ddw403. https://doi.org/10.1093/hmg/ddw403.

  167. Greenberg, R. A., Sobhian, B., Pathania, S., Cantor, S. B., Nakatani, Y., & Livingston, D. M. (2006). Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes & Development, 20(1), 34–46.

    Article  CAS  Google Scholar 

  168. Nishikawa, H., Wu, W., Koike, A., Kojima, R., Gomi, H., Fkuda, M., et al. (2009). BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Research, 69(1), 111–119.

    Article  CAS  PubMed  Google Scholar 

  169. Forma, E., Jozwiak, P., Brys, M., & Krzeslak, A. (2014). The potential role of O-GlcNAc modification in cancer epigenetics. Cell & Molecular Biology Letters, 19(3), 438–460.

    Article  CAS  Google Scholar 

  170. Wang, A., Papneja, A., Hyrcza, M., Al-Habeeb, A., & Ghazarian, D. (2016). Gene of the month: BAP1. Journal of Clinical Pathology, 69(9), 750–753.

    Article  CAS  PubMed  Google Scholar 

  171. Daou, S., Hammond-Martel, I., Mashtalir, N., Barbour, H., Gagnon, J., Jannantuono, N. V., et al. (2015). The BAP1/ASXL2 histone H2A deubiquitinase complex regulates cell proliferation and is disrupted in cancer. Journal of Biological Chemistry, 290(48), 28643–28663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shang, D., Han, T., Xu, X., & Liu, Y. (2015). Decitabine induces G2/M cell cycle arrest by suppressing p38/NF-κB signaling in human renal clear cell carcinoma. International Journal of Clinical Experimental Pathology, 8(9), 11140–11148.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Brinkmann, K., Zigrino, P., Witt, A., Schell, M., Ackermann, L., Broxtermann, P., et al. (2013). Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Cell Reports, 3(3), 881–891.

    Article  CAS  PubMed  Google Scholar 

  174. Pena-Llopis, S., Vega-Rubin-de-Celis, S., Liao, A., Leng, N., Pavía-Jiménez, A., Wang, S., et al. (2012). BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 44(7), 751–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by grants from the National Nature Science Foundation of China (Nos. 81301820, 81472673, 81672720, 81672334), the Fund of Shanghai Science and Technology Commission (16ZR1406100) and the National Clinical Key Special Subject of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhong Shen.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Shen, X. Ubiquitin carboxyl-terminal hydrolases: involvement in cancer progression and clinical implications. Cancer Metastasis Rev 36, 669–682 (2017). https://doi.org/10.1007/s10555-017-9702-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-017-9702-0

Keywords

Navigation