Skip to main content

Advertisement

Log in

The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal

  • Clinical
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

A nearly universal feature of pancreatic ductal adenocarcinoma (PDAC) is an extensive presence of activated stroma. This stroma is thought to aid in various tumor-promoting processes and hampers response to therapy. Here, we aim to evaluate the evidence that supports this role of the stroma in PDAC with functional experiments in relevant models, discuss the clinical trials that have aimed to target the stroma in this disease, and examine recent work that explains why these clinical trials based on stroma-targeting strategies have thus far not achieved the expected success. We systematically searched PubMed through August 2014 with no restrictions to identify published peer-reviewed research articles assessing the effect of targeting the stroma on tumor growth or metastases in preclinical animal models. Five hundred and thirty articles were extracted of which 31 were included in the analysis. Unfortunately, due to the large variety in models and outcome measures, we could not perform a meta-analysis of our data. We find that despite an abundance of positive outcomes reported in previous studies on stroma targeting, a strong discrepancy exists with the outcomes of clinical trials and the more recent preclinical work that is in line with these trials. We explain the incongruities by the duration of stroma targeting and propose that chronic stroma targeting treatment is possibly detrimental in the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

aSMA:

Alpha smooth muscle actin

CAF:

Cancer-associated fibroblast

CCL5:

Chemokine (C-C motif) ligand 5

CTGF:

Connective tissue growth factor

CTLA4:

Cytotoxic T lymphocyte-associated protein 4

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal transition

FAP:

Fibroblast activation protein

ICG:

Ink4a/Arf −/− Pdx1-Cre;Gli1 nLacZ/+

KC:

Ptf1a-Cre; Kras LSL.G12D/+

KCS:

Ptf1a-Cre; Kras LSL.G12D/+ ;Shh fl/fl

KICG:

Kras LSL.G12D/+ ;Ink4a/Arf −/− ;Pdx1-Cre;Gli1 nLacZ/+

KPC:

Kras LSL.G12D/+ ;p53 LSL-R172H/+ ;Pdx1-Cre (Rhim et al.) or Ptf1a-Cre;p53 fl/+ ;Kras LSL.G12D/+ (Lee et al.)

KPC:

αSMA-tk Kras LSL.G12D/+ ;p53 LSL-R172H/+ ;Pdx1-Cre;aSMA-tk

KRAS:

Kirsten rat sarcoma

OS:

Overall survival

PanIN:

Pancreatic intraepithelial neoplasm

PDGF:

Platelet derived growth factor

PKT:

αSMA-tk Ptf1a-Cre;Kras LSL-G12D/+ ;Tgfbr2 fl/fl ;aSMA-tk

PKT:

αSMA-tk;YFP Ptf1a-Cre;Kras LSL-G12D/+ ;Tgfbr2 fl/fl ;Rosa LSL-YFP

PKT:

αSMA-tk; αSMA-RFP Ptf1a-Cre; Kras LSL-G12D/+ ;Tgfbr2 fl/fl ;aSMA-tk;aSMA-RFP

PDAC:

Pancreatic ductal adenocarcinoma

PKCY:

p53 fl/+ ;Kras LSL.G12D/+ ;Pdx1-Cre;Rosa LSL- YFP

PSC:

Pancreatic stellate cell

SHH:

Sonic Hedgehog

ShhKPCY:

Shh fl/fl ;KrasLSL.G12D/+;p53LSL-R172H/+;Pdx1-Cre;RosaLSL-YFP

SMO:

Smoothened

SPARC:

Secreted protein acidic and rich in cysteine

TGFb:

Tissue growth factor beta

VEGFR2:

Vascular endothelial growth factor receptor 2

Reference

  1. Rahib, L., Smith, B. D., Aizenberg, R., Rosenzweig, A. B., Fleshman, J. M., & Matrisian, L. M. (2014). Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Research, 74, 2913–2921. doi:10.1158/0008-5472.CAN-14-0155.

    Article  CAS  PubMed  Google Scholar 

  2. Hidalgo, M. (2010). Pancreatic cancer. New English Journal Medicine, 362, 1605–1617. doi:10.1056/NEJMra0901557.

    Article  CAS  Google Scholar 

  3. Oettle, H., Post, S., Neuhaus, P., Gellert, K., Langrehr, J., Ridwelski, K., Schramm, H., Fahlke, J., Zuelke, C., Burkart, C., Gutberlet, K., Kettner, E., Schmalenberg, H., Weigang-Koehler, K., Bechstein, W. O., Niedergethmann, M., Schmidt-Wolf, I., Roll, L., Doerken, B., & Riess, H. (2007). Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA, 297, 267–277. doi:10.1001/jama.297.3.267.

    Article  CAS  PubMed  Google Scholar 

  4. Neoptolemos, J. P., Stocken, D. D., Bassi, C., Ghaneh, P., Cunningham, D., Goldstein, D., Padbury, R., Moore, M. J., Gallinger, S., Mariette, C., Wente, M. N., Izbicki, J. R., Friess, H., Lerch, M. M., Dervenis, C., Olah, A., Butturini, G., Doi, R., Lind, P. A., Smith, D., Valle, J. W., Palmer, D. H., Buckels, J. A., Thompson, J., McKay, C. J., & Rawcliffe, C. L. (2010). Buchler MW (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA, 304, 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  5. Ueno, H., Kosuge, T., Matsuyama, Y., Yamamoto, J., Nakao, A., Egawa, S., Doi, R., Monden, M., Hatori, T., Tanaka, M., Shimada, M., & Kanemitsu, K. (2009). A randomised phase III trial comparing gemcitabine with surgery-only in patients with resected pancreatic cancer: Japanese Study Group of Adjuvant Therapy for Pancreatic Cancer. British Journal of Cancer, 101, 908–915. doi:10.1038/sj.bjc.6605256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burris, H. A., III, Moore, M. J., Andersen, J., Green, M. R., Rothenberg, M. L., Modiano, M. R., Cripps, M. C., Portenoy, R. K., Storniolo, A. M., Tarassoff, P., Nelson, R., Dorr, F. A., Stephens, C. D., & Von Hoff, D. D. (1997). Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. Journal of Clinical Oncology, 15, 2403–2413.

    CAS  PubMed  Google Scholar 

  7. Moore, M. J., Goldstein, D., Hamm, J., Figer, A., Hecht, J. R., Gallinger, S., Au, H. J., Murawa, P., Walde, D., Wolff, R. A., Campos, D., Lim, R., Ding, K., Clark, G., Voskoglou-Nomikos, T., Ptasynski, M., & Parulekar, W. (2007). Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Journal of Clinical Oncology, 25, 1960–1966. doi:10.1200/JCO.2006.07.9525.

    Article  CAS  PubMed  Google Scholar 

  8. Conroy, T., Desseigne, F., Ychou, M., Bouche, O., Guimbaud, R., Becouarn, Y., Adenis, A., Raoul, J. L., Gourgou-Bourgade, S., de la Fouchardiere, C., Bennouna, J., Bachet, J. B., Khemissa-Akouz, F., Pere-Verge, D., Delbaldo, C., Assenat, E., Chauffert, B., Michel, P., Montoto-Grillot, C., & Ducreux, M. (2011). FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New English Journal Medicine, 364, 1817–825. doi:10.1056/NEJMoa1011923. 364.

    Article  CAS  Google Scholar 

  9. Van Laethem, J. L., Verslype, C., Iovanna, J. L., Michl, P., Conroy, T., Louvet, C., Hammel, P., Mitry, E., Ducreux, M., Maraculla, T., Uhl, W., Van, T. G., Bachet, J. B., Marechal, R., Hendlisz, A., Bali, M., Demetter, P., Ulrich, F., Aust, D., Luttges, J., Peeters, M., Mauer, M., Roth, A., Neoptolemos, J. P., & Lutz, M. (2012). ew strategies and designs in pancreatic cancer research: consensus guidelines report from a European expert panel. Annals of Oncology, 23, 570–576. doi:10.1093/annonc/mdr351.

    Article  PubMed  Google Scholar 

  10. Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., Gray, J. W., Collisson, E. A., Sadanandam, A., Olson, P., Gibb, W. J., Truitt, M., Gu, S., Cooc, J., Weinkle, J., Kim, G. E., Jakkula, L., Feiler, H. S., Ko, A. H., Olshen, A. B., Danenberg, K. L., Tempero, M. A., Spellman, P. T., Hanahan, D., & Gray, J. W. (2011). Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nature Medicine, 17(17), 500–503. doi:10.1038/nm.2344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Samuel, N., & Hudson, T. J. (2012). The molecular and cellular heterogeneity of pancreatic ductal adenocarcinoma. Nature Reviews. Gastroenterology & Hepatology, 9, 77–87. doi:10.1038/nrgastro.2011.215.

    Article  CAS  Google Scholar 

  12. Makohon-Moore, A., Brosnan, J. A., & Iacobuzio-Donahue, C. A. (2013). Pancreatic cancer genomics: insights and opportunities for clinical translation. Genome Medicine, 5, 26. doi:10.1186/gm430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, J., Jiao, Y., Dal, M. M., Maitra, A., de Wilde, R. F., Wood, L. D., Eshleman, J. R., Goggins, M. G., Wolfgang, C. L., Canto, M. I., Schulick, R. D., Edil, B. H., Choti, M. A., Adsay, V., Klimstra, D. S., Offerhaus, G. J., Klein, A. P., Kopelovich, L., Carter, H., Karchin, R., Allen, P. J., Schmidt, C. M., Naito, Y., Diaz, L. A., Jr., Kinzler, K. W., Papadopoulos, N., Hruban, R. H., & Vogelstein, B. (2011). Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 108, 21188–21193. doi:10.1073/pnas.1118046108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hruban, R. H., & Adsay, N. V. (2009). Molecular classification of neoplasms of the pancreas. Human Pathology, 40, 612–623. doi:10.1016/j.humpath.2009.01.008.

    Article  CAS  PubMed  Google Scholar 

  15. Kanda, M., Matthaei, H., Wu, J., Hong, S. M., Yu, J., Borges, M., Hruban, R. H., Maitra, A., Kinzler, K., Vogelstein, B., & Goggins, M. (2012). Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology, 142, 730–733. doi:10.1053/j.gastro.2011.12.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Biankin, A. V., Waddell, N., Kassahn, K. S., Gingras, M. C., Muthuswamy, L. B., Johns, A. L., Miller, D. K., Wilson, P. J., Patch, A. M., Wu, J., Chang, D. K., Cowley, M. J., Gardiner, B. B., Song, S., Harliwong, I., Idrisoglu, S., Nourse, C., Nourbakhsh, E., Manning, S., Wani, S., Gongora, M., Pajic, M., Scarlett, C. J., Gill, A. J., Pinho, A. V., Rooman, I., Anderson, M., Holmes, O., Leonard, C., Taylor, D., Wood, S., Xu, Q., Nones, K., Fink, J. L., Christ, A., Bruxner, T., Cloonan, N., Kolle, G., Newell, F., Pinese, M., Mead, R. S., Humphris, J. L., Kaplan, W., Jones, M. D., Colvin, E. K., Nagrial, A. M., Humphrey, E. S., Chou, A., Chin, V. T., Chantrill, L. A., Mawson, A., Samra, J. S., Kench, J. G., Lovell, J. A., Daly, R. J., Merrett, N. D., Toon, C., Epari, K., Nguyen, N. Q., Barbour, A., Zeps, N., Kakkar, N., Zhao, F., Wu, Y. Q., Wang, M., Muzny, D. M., Fisher, W. E., Brunicardi, F. C., Hodges, S. E., Reid, J. G., Drummond, J., Chang, K., Han, Y., Lewis, L. R., Dinh, H., Buhay, C. J., Beck, T., Timms, L., Sam, M., Begley, K., Brown, A., Pai, D., Panchal, A., Buchner, N., De, B. R., Denroche, R. E., Yung, C. K., Serra, S., Onetto, N., Mukhopadhyay, D., Tsao, M. S., Shaw, P. A., Petersen, G. M., Gallinger, S., Hruban, R. H., Maitra, A., Iacobuzio-Donahue, C. A., Schulick, R. D., Wolfgang, C. L., Morgan, R. A., Lawlor, R. T., Capelli, P., Corbo, V., Scardoni, M., Tortora, G., Tempero, M. A., Mann, K. M., Jenkins, N. A., Perez-Mancera, P. A., Adams, D. J., Largaespada, D. A., Wessels, L. F., Rust, A. G., Stein, L. D., Tuveson, D. A., Copeland, N. G., Musgrove, E. A., Scarpa, A., Eshleman, J. R., Hudson, T. J., Sutherland, R. L., Wheeler, D. A., Pearson, J. V., McPherson, J. D., Gibbs, R. A., & Grimmond, S. M. (2012). Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491, 399–405. doi:10.1038/nature11547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collins, M. A., Bednar, F., Zhang, Y., Brisset, J. C., Galban, S., Galban, C. J., Rakshit, S., Flannagan, K. S., Adsay, N. V., & di Pasca, M. M. (2012). Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. Journal of Clinical Investigation, 122, 639–653. doi:10.1172/JCI59227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yachida, S., White, C. M., Naito, Y., Zhong, Y., Brosnan, J. A., Macgregor-Das, A. M., Morgan, R. A., Saunders, T., Laheru, D. A., Herman, J. M., Hruban, R. H., Klein, A. P., Jones, S., Velculescu, V., Wolfgang, C. L., & Iacobuzio-Donahue, C. A. (2012). Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clinical Cancer Research, 18, 6339–6347. doi:10.1158/1078-0432.CCR-12-1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Donahue, T. R., Tran, L. M., Hill, R., Li, Y., Kovochich, A., Calvopina, J. H., Patel, S. G., Wu, N., Hindoyan, A., Farrell, J. J., Li, X., Dawson, D. W., & Wu, H. (2012). Integrative survival-based molecular profiling of human pancreatic cancer. Clinical Cancer Research, 18, 1352–1363. doi:10.1158/1078-0432.CCR-11-1539.

    Article  CAS  PubMed  Google Scholar 

  20. Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M., Hruban, R. H., Eshleman, J. R., Nowak, M. A., Velculescu, V. E., Kinzler, K. W., Vogelstein, B., & Iacobuzio-Donahue, C. A. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–1117. doi:10.1038/nature09515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Kamiyama, H., Jimeno, A., Hong, S. M., Fu, B., Lin, M. T., Calhoun, E. S., Kamiyama, M., Walter, K., Nikolskaya, T., Nikolsky, Y., Hartigan, J., Smith, D. R., Hidalgo, M., Leach, S. D., Klein, A. P., Jaffee, E. M., Goggins, M., Maitra, A., Iacobuzio-Donahue, C., Eshleman, J. R., Kern, S. E., Hruban, R. H., Karchin, R., Papadopoulos, N., Parmigiani, G., Vogelstein, B., Velculescu, V. E., & Kinzler, K. W. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806. doi:10.1126/science.1164368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Erkan, M., Reiser-Erkan, C., Michalski, C. W., Kong, B., Esposito, I., Friess, H., & Kleeff, J. (2012). The impact of the activated stroma on pancreatic ductal adenocarcinoma biology and therapy resistance. Current Molecular Medicine, 12, 288–303.

    Article  CAS  PubMed  Google Scholar 

  23. Goel, S., Duda, D. G., Xu, L., Munn, L. L., Boucher, Y., Fukumura, D., & Jain, R. K. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiological Reviews, 91, 1071–1121. doi:10.1152/physrev.00038.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erkan, M., Reiser-Erkan, C., Michalski, C. W., & Kleeff, J. (2010). Tumor microenvironment and progression of pancreatic cancer. Experimental Oncology, 32, 128–131.

    CAS  PubMed  Google Scholar 

  25. Ozdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simpson, T. R., Laklai, H., Sugimoto, H., Kahlert, C., Novitskiy, S. V., De Jesus-Acosta, A., Sharma, P., Heidari, P., Mahmood, U., Chin, L., Moses, H. L., Weaver, V. M., Maitra, A., Allison, J. P., LeBleu, V. S., & Kalluri, R. (2014). Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell, 25, 719–734. doi:10.1016/j.ccr.2014.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T., & Vu, V. T. (2009). Hypoxia and radiation therapy: past history, ongoing research, and future promise. Current Molecular Medicine, 9, 442–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kleeff, J., Beckhove, P., Esposito, I., Herzig, S., Huber, P. E., Lohr, J. M., & Friess, H. (2007). Pancreatic cancer microenvironment. International Journal of Cancer, 121, 699–705. doi:10.1002/ijc.22871.

    Article  CAS  PubMed  Google Scholar 

  28. McCarroll, J. A., Naim, S., Sharbeen, G., Russia, N., Lee, J., Kavallaris, M., Goldstein, D., & Phillips, P. A. (2014). Role of pancreatic stellate cells in chemoresistance in pancreatic cancer. Frontiers in Physiology, 5, 141. doi:10.3389/fphys.2014.00141.

    PubMed  PubMed Central  Google Scholar 

  29. Jaster, R. (2004). Molecular regulation of pancreatic stellate cell function. Molecular Cancer, 3, 26. doi:10.1186/1476-4598-3-26.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Erkan, M., Reiser-Erkan, C., Michalski, C. W., Deucker, S., Sauliunaite, D., Streit, S., Esposito, I., Friess, H., & Kleeff, J. (2009). Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia, 11, 497–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sparmann, G., Kruse, M. L., Hofmeister-Mielke, N., Koczan, D., Jaster, R., Liebe, S., Wolff, D., & Emmrich, J. (2010). Bone marrow-derived pancreatic stellate cells in rats. Cell Research, 20, 288–298. doi:10.1038/cr.2010.10.

    Article  PubMed  Google Scholar 

  32. Akita, S., Kubota, K., Kobayashi, A., Misawa, R., Shimizu, A., Nakata, T., Yokoyama, T., Takahashi, M., & Miyagawa, S. (2012). Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochemical and Biophysical Research Communications, 420, 743–749. doi:10.1016/j.bbrc.2012.03.060.

    Article  CAS  PubMed  Google Scholar 

  33. Scarlett, C. J., Colvin, E. K., Pinese, M., Chang, D. K., Morey, A. L., Musgrove, E. A., Pajic, M., Apte, M., Henshall, S. M., Sutherland, R. L., Kench, J. G., & Biankin, A. V. (2011). Recruitment and activation of pancreatic stellate cells from the bone marrow in pancreatic cancer: a model of tumor-host interaction. PloS One, 6, e26088. doi:10.1371/journal.pone.0026088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Medema, J. P., & Vermeulen, L. (2011). Microenvironmental regulation of stem cells in intestinal homeostasis and cancer. Nature, 474, 318–326. doi:10.1038/nature10212.

    Article  CAS  PubMed  Google Scholar 

  35. De Sousa, E., Melo, V. L., Fessler, E., & Medema, J. P. (2013). Cancer heterogeneity—a multifaceted view. EMBO Reports, 14, 686–695. doi:10.1038/embor.2013.92.

    Article  Google Scholar 

  36. Kadaba, R., Birke, H., Wang, J., Hooper, S., Andl, C. D., Di, M. F., Soylu, E., Ghallab, M., Bor, D., Froeling, F. E., Bhattacharya, S., Rustgi, A. K., Sahai, E., Chelala, C., Sasieni, P., & Kocher, H. M. (2013). Imbalance of desmoplastic stromal cell numbers drives aggressive cancer processes. Journal of Pathology, 230, 107–117. doi:10.1002/path.4172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coleman, S. J., Chioni, A. M., Ghallab, M., Anderson, R. K., Lemoine, N. R., Kocher, H. M., & Grose, R. P. (2014). Nuclear translocation of FGFR1 and FGF2 in pancreatic stellate cells facilitates pancreatic cancer cell invasion. EMBO Molecular Medicine, 6, 467–481. doi:10.1002/emmm.201302698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., Clarke, M., Devereaux, P. J., Kleijnen, J., & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339, b2700.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Thayer, S. P., di Magliano, M. P., Heiser, P. W., Nielsen, C. M., Roberts, D. J., Lauwers, G. Y., Qi, Y. P., Gysin, S., Fernandez-del, C. C., Yajnik, V., Antoniu, B., McMahon, M., Warshaw, A. L., & Hebrok, M. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 425, 851–856. doi:10.1038/nature02009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heretsch, P., Tzagkaroulaki, L., & Giannis, A. (2010). Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angewandte Chemie International Edition in English, 49, 3418–3427. doi:10.1002/anie.200906967.

    Article  CAS  Google Scholar 

  41. Ericson, J., Morton, S., Kawakami, A., Roelink, H., & Jessell, T. M. (1996). Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell, 87, 661–673.

    Article  CAS  PubMed  Google Scholar 

  42. Bailey, J. M., Swanson, B. J., Hamada, T., Eggers, J. P., Singh, P. K., Caffery, T., Ouellette, M. M., & Hollingsworth, M. A. (2008). Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clinical Cancer Research, 14, 5995–6004. doi:10.1158/1078-0432.CCR-08-0291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Olive, K. P., Jacobetz, M. A., Davidson, C. J., Gopinathan, A., McIntyre, D., Honess, D., Madhu, B., Goldgraben, M. A., Caldwell, M. E., Allard, D., Frese, K. K., Denicola, G., Feig, C., Combs, C., Winter, S. P., Ireland-Zecchini, H., Reichelt, S., Howat, W. J., Chang, A., Dhara, M., Wang, L., Ruckert, F., Grutzmann, R., Pilarsky, C., Izeradjene, K., Hingorani, S. R., Huang, P., Davies, S. E., Plunkett, W., Egorin, M., Hruban, R. H., Whitebread, N., McGovern, K., Adams, J., Iacobuzio-Donahue, C., Griffiths, J., & Tuveson, D. A. (2009). Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324, 1457–1461. doi:10.1126/science.1171362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakamura, K., Sasajima, J., Mizukami, Y., Sugiyama, Y., Yamazaki, M., Fujii, R., Kawamoto, T., Koizumi, K., Sato, K., Fujiya, M., Sasaki, K., Tanno, S., Okumura, T., Shimizu, N., Kawabe, J., Karasaki, H., Kono, T., Ii, M., Bardeesy, N., Chung, D. C., & Kohgo, Y. (2010). Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PloS One, 5, e8824. doi:10.1371/journal.pone.0008824.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Strand, M. F., Wilson, S. R., Dembinski, J. L., Holsworth, D. D., Khvat, A., Okun, I., Petersen, D., & Krauss, S. (2011). A novel synthetic smoothened antagonist transiently inhibits pancreatic adenocarcinoma xenografts in a mouse model. PloS One, 6, e19904. doi:10.1371/journal.pone.0019904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lonardo, E., Frias-Aldeguer, J., Hermann, P. C., & Heeschen, C. (2012). Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle, 11, 1282–1290. doi:10.4161/cc.19679.

    Article  CAS  PubMed  Google Scholar 

  47. Kayed, H., Meyer, P., He, Y., Kraenzlin, B., Fink, C., Gretz, N., Schoenberg, S. O., & Sadick, M. (2012). Evaluation of the metabolic response to cyclopamine therapy in pancreatic cancer xenografts using a clinical PET-CT system. Translational Oncology, 5, 335–343.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chang, Q., Foltz, W. D., Chaudary, N., Hill, R. P., & Hedley, D. W. (2013). Tumor-stroma interaction in orthotopic primary pancreatic cancer xenografts during hedgehog pathway inhibition. International Journal of Cancer, 133, 225–234. doi:10.1002/ijc.28006.

    Article  CAS  PubMed  Google Scholar 

  49. Von Hoff, D. D., Ramanathan, R. K., Borad, M. J., Laheru, D. A., Smith, L. S., Wood, T. E., Korn, R. L., Desai, N., Trieu, V., Iglesias, J. L., Zhang, H., Soon-Shiong, P., Shi, T., Rajeshkumar, N. V., Maitra, A., & Hidalgo, M. (2011). Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. Journal of Clinical Oncology, 29, 4548–4554. doi:10.1200/JCO.2011.36.5742.

    Article  Google Scholar 

  50. Neesse, A., Frese, K. K., Chan, D. S., Bapiro, T. E., Howat, W. J., Richards, F. M., Ellenrieder, V., Jodrell, D. I., & Tuveson, D. A. (2014). SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut, 63, 974–983. doi:10.1136/gutjnl-2013-305559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alvarez, R., Musteanu, M., Garcia-Garcia, E., Lopez-Casas, P. P., Megias, D., Guerra, C., Munoz, M., Quijano, Y., Cubillo, A., Rodriguez-Pascual, J., Plaza, C., de Vicente, E., Prados, S., Tabernero, S., Barbacid, M., Lopez-Rios, F., & Hidalgo, M. (2013). Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. British Journal of Cancer, 109, 926–933. doi:10.1038/bjc.2013.415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Neesse, A., Frese, K. K., Bapiro, T. E., Nakagawa, T., Sternlicht, M. D., Seeley, T. W., Pilarsky, C., Jodrell, D. I., Spong, S. M., & Tuveson, D. A. (2013). CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 12325–12330. doi:10.1073/pnas.1300415110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Provenzano, P. P., Cuevas, C., Chang, A. E., Goel, V. K., Von Hoff, D. D., & Hingorani, S. R. (2012). Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 21, 418–429. doi:10.1016/j.ccr.2012.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., Feig, C., Nakagawa, T., Caldwell, M. E., Zecchini, H. I., Lolkema, M. P., Jiang, P., Kultti, A., Thompson, C. B., Maneval, D. C., Jodrell, D. I., Frost, G. I., Shepard, H. M., Skepper, J. N., & Tuveson, D. A. (2013). Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut, 62, 112–120. doi:10.1136/gutjnl-2012-302529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Buckway, B., Wang, Y., Ray, A., & Ghandehari, H. (2013). Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors. International Journal of Pharmaceutics, 456, 202–211. doi:10.1016/j.ijpharm.2013.07.067.

    Article  CAS  PubMed  Google Scholar 

  56. Hajime, M., Shuichi, Y., Makoto, N., Masanori, Y., Ikuko, K., Atsushi, K., Mutsuo, S., & Keiichi, T. (2007). Inhibitory effect of 4-methylesculetin on hyaluronan synthesis slows the development of human pancreatic cancer in vitro and in nude mice. International Journal of Cancer, 120, 2704–2709. doi:10.1002/ijc.22349.

    Article  CAS  PubMed  Google Scholar 

  57. Spector, I., Zilberstein, Y., Lavy, A., Nagler, A., Genin, O., & Pines, M. (2012). Involvement of host stroma cells and tissue fibrosis in pancreatic tumor development in transgenic mice. PloS One, 7, e41833. doi:10.1371/journal.pone.0041833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kozono, S., Ohuchida, K., Eguchi, D., Ikenaga, N., Fujiwara, K., Cui, L., Mizumoto, K., & Tanaka, M. (2013). Pirfenidone inhibits pancreatic cancer desmoplasia by regulating stellate cells. Cancer Research, 73, 2345–2356. doi:10.1158/0008-5472.CAN-12-3180.

    Article  CAS  PubMed  Google Scholar 

  59. Kano MR, Bae Y, Iwata C, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K (2007) Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-beta signaling. Proceedings of the National Academy of Sciences of the United States of America 104, 10.1073/pnas.0611660104

  60. Medicherla, S., Li, L., Ma, J. Y., Kapoun, A. M., Gaspar, N. J., Liu, Y. W., Mangadu, R., O’Young, G., Protter, A. A., Schreiner, G. F., Wong, D. H., & Higgins, L. S. (2007). Antitumor activity of TGF-beta inhibitor is dependent on the microenvironment. Anticancer Research, 27, 4149–4157.

    CAS  PubMed  Google Scholar 

  61. Gore, A. J., Deitz, S. L., Palam, L. R., Craven, K. E., & Korc, M. (2014). Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-beta to promote proliferation. Journal of Clinical Investigation, 124, 338–352. doi:10.1172/JCI71526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Arnold, S. A., Rivera, L. B., Carbon, J. G., Toombs, J. E., Chang, C. L., Bradshaw, A. D., & Brekken, R. A. (2012). Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant TGFbeta activation. PloS One, 7, e31384. doi:10.1371/journal.pone.0031384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Masamune, A., Hamada, S., Kikuta, K., Takikawa, T., Miura, S., Nakano, E., & Shimosegawa, T. (2013). The angiotensin II type I receptor blocker olmesartan inhibits the growth of pancreatic cancer by targeting stellate cell activities in mice. Scandinavian Journal of Gastroenterology, 48, 602–609. doi:10.3109/00365521.2013.777776.

    Article  CAS  PubMed  Google Scholar 

  64. Raykov, Z., Grekova, S. P., Bour, G., Lehn, J. M., Giese, N. A., Nicolau, C., & Aprahamian, M. (2014). Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. International Journal of Cancer, 134, 2572–2582. doi:10.1002/ijc.28597.

    Article  CAS  PubMed  Google Scholar 

  65. Martinez-Bosch, N., Fernandez-Barrena, M. G., Moreno, M., Ortiz-Zapater, E., Munne-Collado, J., Iglesias, M., Andre, S., Gabius, H. J., Hwang, R. F., Poirier, F., Navas, C., Guerra, C., Fernandez-Zapico, M. E., & Navarro, P. (2014). Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Research, 74, 3512–3524. doi:10.1158/0008-5472.CAN-13-3013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Feig, C., Jones, J. O., Kraman, M., Wells, R. J., Deonarine, A., Chan, D. S., Connell, C. M., Roberts, E. W., Zhao, Q., Caballero, O. L., Teichmann, S. A., Janowitz, T., Jodrell, D. I., Tuveson, D. A., & Fearon, D. T. (2013). Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proceedings of the National Academy of Sciences of the United States of America, 110, 20212–20217. doi:10.1073/pnas.1320318110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ijichi, H., Chytil, A., Gorska, A. E., Aakre, M. E., Bierie, B., Tada, M., Mohri, D., Miyabayashi, K., Asaoka, Y., Maeda, S., Ikenoue, T., Tateishi, K., Wright, C. V., Koike, K., Omata, M., & Moses, H. L. (2011). Inhibiting Cxcr2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. Journal of Clinical Investigation, 121, 4106–4117. doi:10.1172/JCI42754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mayorek, N., Naftali-Shani, N., & Grunewald, M. (2010). Diclofenac inhibits tumor growth in a murine model of pancreatic cancer by modulation of VEGF levels and arginase activity. PloS One, 5, e12715. doi:10.1371/journal.pone.0012715.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rhim, A. D., Oberstein, P. E., Thomas, D. H., Mirek, E. T., Palermo, C. F., Sastra, S. A., Dekleva, E. N., Saunders, T., Becerra, C. P., Tattersall, I. W., Westphalen, C. B., Kitajewski, J., Fernandez-Barrena, M. G., Fernandez-Zapico, M. E., Iacobuzio-Donahue, C., Olive, K. P., & Stanger, B. Z. (2014). Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell, 25, 735–747. doi:10.1016/j.ccr.2014.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S, Fitamant J, Jones PD, Ghanta KS, Kawano S, Nagle JM, Deshpande V, Boucher Y, Kato T, Chen JK, Willmann JK, Bardeesy N, Beachy PA (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci U S A 111, 10.1073/pnas.1411679111

  71. Von Hoff, D. D., Ervin, T., Arena, F. P., Chiorean, E. G., Infante, J., Moore, M., Seay, T., Tjulandin, S. A., Ma, W. W., Saleh, M. N., Harris, M., Reni, M., Dowden, S., Laheru, D., Bahary, N., Ramanathan, R. K., Tabernero, J., Hidalgo, M., Goldstein, D., Van, C. E., Wei, X., Iglesias, J., & Renschler, M. F. (2013). Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New England Journal of Medicine, 369, 1691–1703. doi:10.1056/NEJMoa1304369.

    Article  Google Scholar 

  72. Goldstein, D., El Maraghi, R. H., Hammel, P., Heinemann, V., Kunzmann, V., Sastre, J., Scheithauer, W., Siena, S., Tabernero, J., Teixeira, L., Tortora, G., Van Laethem, J. L., Young, R., Wei, X., Lu, B., Romano, A., & Von Hoff, D. D. (2014). Updated survival from a randomized phase III trial (MPACT) of nab-paclitaxel plus gemcitabine versus gemcitabine alone for patients (pts) with metastatic adenocarcinoma of the pancreas. Journal of Clinical Oncology Meeting Abstracts, 32, 178.

    Google Scholar 

  73. Frese, K. K., Neesse, A., Cook, N., Bapiro, T. E., Lolkema, M. P., Jodrell, D. I., & Tuveson, D. A. (2012). nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discovery, 2, 260–269. doi:10.1158/2159-8290.CD-11-0242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Catenacci, D. V. T., Bahari, N., Edelman, M. J., Nattam, S. R., de Wilton, M. R., Kaubisch, A., Wallace, J. A., Cohen, D. J., Stiff, P. J., Sleckman, B. G., Thomas, S. P., Lenz, H. J., Henderson, L., Zagaya, C., Vannier, M., Karrison, T., Stadler, W. M., & Kindler, H. L. (2012). A phase IB/randomized phase II study of gemcitabine (G) plus placebo (P) or vismodegib (V), a hedgehog (Hh) pathway inhibitor, in patients (pts) with metastatic pancreatic cancer (PC): Interim analysis of a University of Chicago phase II consortium study. Journal of Clinical Oncology Meeting Abstracts, 30, 4022.

    Google Scholar 

  75. Richards, D. A., Stephenson, J., Wolpin, B. M., Becerra, C., Hamm, J. T., Messersmith, W. A., Devens, S., Cushing, J., Schmalbach, T., & Fuchs, C. S. (2012). A phase Ib trial of IPI-926, a hedgehog pathway inhibitor, plus gemcitabine in patients with metastatic pancreatic cancer. Journal of Clinical Oncology Meeting Abstracts, 30, 213.

    Google Scholar 

  76. Palmer, S. R., Erlichman, C., Fernandez-Zapico, M., Qi, Y., Almada, L., McCleary-Wheeler, A., Borad, M. J., Molina, J. R., Grothey, H. C., Pitot, H. C., Jatoi, A., Northfelt, D. W., McWilliams, R., Okuno, H., Haluska, P., Kim, G. P., & Colon-Otero, G. (2011). Phase I trial erlotinib, gemcitabine, and the hedgehog inhibitor, GDC-0449. Journal of Clinical Oncology Meeting Abstracts, 29, 3092.

    Google Scholar 

  77. De Jesus-Acosta, A., O’Dwyer, P. J., Ramanathan, R. K., Von Hoff, D. D., Maitra, A., Rasheed, Z., Zheng, L., Rajeshkumar, N. V., Le, D. T., Hoering, A., Bolejack, V., Yabuuchi, S., & Laheru, D. A. (2014). A phase II study of vismodegib, a hedgehog (Hh) pathway inhibitor, combined with gemcitabine and nab-paclitaxel (nab-P) in patients (pts) with untreated metastatic pancreatic ductal adenocarcinoma (PDA). J Clinical Oncology Meeting Abstracts, 32, 257.

    Google Scholar 

  78. Anonymous (2012) Infinity reports update from phase 2 study of saridegib plus gemcitabine in patients with metastatic pancreatic cancer. http://www.businesswire.com/news/home/20120127005146/en/Infinity-Reports-Update-Phase-2-Study-Saridegib#U-DoOICSy6w date accessed 31-8-2014.

  79. Damhofer, H., Medema, J. P., Veenstra, V. L., Badea, L., Popescu, I., Roelink, H., & Bijlsma, M. F. (2013). Assessment of the stromal contribution to Sonic Hedgehog-dependent pancreatic adenocarcinoma. Molecular Oncology, 7, 1031–1042. doi:10.1016/j.molonc.2013.08.004.

    Article  CAS  PubMed  Google Scholar 

  80. Flaberg, E., Markasz, L., Petranyi, G., Stuber, G., Dicso, F., Alchihabi, N., Olah, E., Csizy, I., Jozsa, T., Andren, O., Johansson, J. E., Andersson, S. O., Klein, G., & Szekely, L. (2011). High-throughput live-cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. International Journal of Cancer, 128, 2793–2802. doi:10.1002/ijc.25612.

    Article  CAS  PubMed  Google Scholar 

  81. Truty, M. J., & Urrutia, R. (2007). Transforming growth factor-beta: what every pancreatic surgeon should know. Surgery, 141, 1–6. doi:10.1016/j.surg.2006.07.019.

    Article  PubMed  Google Scholar 

  82. Harsha, H. C., Kandasamy, K., Ranganathan, P., Rani, S., Ramabadran, S., Gollapudi, S., Balakrishnan, L., Dwivedi, S. B., Telikicherla, D., Selvan, L. D., Goel, R., Mathivanan, S., Marimuthu, A., Kashyap, M., Vizza, R. F., Mayer, R. J., Decaprio, J. A., Srivastava, S., Hanash, S. M., Hruban, R. H., & Pandey, A. (2009). A compendium of potential biomarkers of pancreatic cancer. PLoS Medicine, 6, e1000046. doi:10.1371/journal.pmed.1000046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Francia, G., Cruz-Munoz, W., Man, S., Xu, P., & Kerbel, R. S. (2011). Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nature Reviews Cancer, 11, 135–141. doi:10.1038/nrc3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lonardo, E., Hermann, P. C., Mueller, M. T., Huber, S., Balic, A., Miranda-Lorenzo, I., Zagorac, S., Alcala, S., Rodriguez-Arabaolaza, I., Ramirez, J. C., Torres-Ruiz, R., Garcia, E., Hidalgo, M., Cebrian, D. A., Heuchel, R., Lohr, M., Berger, F., Bartenstein, P., Aicher, A., & Heeschen, C. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell, 9, 433–446. doi:10.1016/j.stem.2011.10.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a KWF Dutch Cancer Society Research Grant (UVA 2012–5607) for MFB.

Author Contributions

Both MFB and HvL decided on inclusion of papers, analyzed the data, and wrote the manuscript.

Conflict of interest

HvL received research support from Celgene for a clinical study with nab-paclitaxel and participated in advisory boards of Lilly on ramucirumab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanneke W. M. van Laarhoven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijlsma, M.F., van Laarhoven, H.W.M. The conflicting roles of tumor stroma in pancreatic cancer and their contribution to the failure of clinical trials: a systematic review and critical appraisal. Cancer Metastasis Rev 34, 97–114 (2015). https://doi.org/10.1007/s10555-014-9541-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9541-1

Keywords

Navigation