Skip to main content

Advertisement

Log in

The pre-metastatic niche: finding common ground

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

It is rapidly becoming evident that the formation of tumor-promoting pre-metastatic niches in secondary organs adds a previously unrecognized degree of complexity to the challenge of curing metastatic disease. Primary tumor cells orchestrate pre-metastatic niche formation through secretion of a variety of cytokines and growth factors that promote mobilization and recruitment of bone marrow-derived cells to future metastatic sites. Hypoxia within the primary tumor, and secretion of specific microvesicles termed exosomes, are emerging as important processes and vehicles for tumor-derived factors to modulate pre-metastatic sites. It has also come to light that reduced immune surveillance is a novel mechanism through which primary tumors create favorable niches in secondary organs. This review provides an overview of our current understanding of underlying mechanisms of pre-metastatic niche formation and highlights the common links as well as discrepancies between independent studies. Furthermore, the possible clinical implications, links to metastatic persistence and dormancy, and novel approaches for treatment of metastatic disease through reversal of pre-metastatic niche formation are identified and explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gupta, G. P., & Massague, J. (2006). Cancer metastasis: building a framework. Cell, 127(4), 679–695.

    PubMed  CAS  Google Scholar 

  2. Klein, C. A. (2008). Cancer. The metastasis cascade. Science, 321(5897), 1785–1787.

    PubMed  CAS  Google Scholar 

  3. Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews. Cancer, 9(4), 239–252.

    PubMed  CAS  Google Scholar 

  4. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.

    PubMed  CAS  Google Scholar 

  5. Paget, G. (1889). Remarks on a case of alternate partial anaesthesia. British Medical Journal, 1(1462), 1–3.

    PubMed  CAS  Google Scholar 

  6. Muller, A., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.

    PubMed  CAS  Google Scholar 

  7. Weigelt, B., et al. (2005). No common denominator for breast cancer lymph node metastasis. British Journal of Cancer, 93(8), 924–932.

    PubMed  CAS  Google Scholar 

  8. Kaplan, R. N., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    PubMed  CAS  Google Scholar 

  9. Psaila, B., & Lyden, D. (2009). The metastatic niche: adapting the foreign soil. Nature Reviews. Cancer, 9(4), 285–293.

    PubMed  CAS  Google Scholar 

  10. Duda, D. G., & Jain, R. K. (2010). Premetastatic lung “niche”: is vascular endothelial growth factor receptor 1 activation required? Cancer Research, 70(14), 5670–5673.

    PubMed  CAS  Google Scholar 

  11. Dawson, M. R., et al. (2009). VEGFR1-activity-independent metastasis formation. Nature, 461(7262), E4. Discussion, E5.

    PubMed  CAS  Google Scholar 

  12. Lin, E. Y., et al. (2006). Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Research, 66(23), 11238–11246.

    PubMed  CAS  Google Scholar 

  13. Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.

    PubMed  CAS  Google Scholar 

  14. Coussens, L. M., et al. (1999). Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes & Development, 13(11), 1382–1397.

    CAS  Google Scholar 

  15. Hiratsuka, S., et al. (2006). Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nature Cell Biology, 8(12), 1369–1375.

    PubMed  CAS  Google Scholar 

  16. Kowanetz, M., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G + Ly6C + granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255.

    PubMed  CAS  Google Scholar 

  17. Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews. Cancer, 2(1), 38–47.

    PubMed  CAS  Google Scholar 

  18. Semenza, G. L. (2012). Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends in Pharmacological Sciences, 33(4), 207–214.

    PubMed  CAS  Google Scholar 

  19. Bos, R., et al. (2003). Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer, 97(6), 1573–1581.

    PubMed  Google Scholar 

  20. Dales, J. P., et al. (2005). Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. International Journal of Cancer, 116(5), 734–739.

    CAS  Google Scholar 

  21. Erler, J. T., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.

    PubMed  CAS  Google Scholar 

  22. Wong, C. C., et al. (2011). Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16369–16374.

    PubMed  CAS  Google Scholar 

  23. Bondareva, A., et al. (2009). The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One, 4(5), e5620.

    PubMed  Google Scholar 

  24. Sceneay, J., et al. (2012). Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Research, 72, 3906–11.

    PubMed  CAS  Google Scholar 

  25. Chioda, M., et al. (2011). Myeloid cell diversification and complexity: an old concept with new turns in oncology. Cancer Metastasis Reviews, 30(1), 27–43.

    PubMed  Google Scholar 

  26. Yan, H. H., et al. (2010). Gr-1 + CD11b + myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70(15), 6139–6149.

    PubMed  CAS  Google Scholar 

  27. Kim, S., et al. (2009). Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature, 457(7225), 102–106.

    PubMed  CAS  Google Scholar 

  28. Granot, Z., et al. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20(3), 300–314.

    PubMed  CAS  Google Scholar 

  29. Filipazzi, P., et al. (2007). Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology, 25(18), 2546–2553.

    PubMed  CAS  Google Scholar 

  30. Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162–174.

    PubMed  CAS  Google Scholar 

  31. Poschke, I., et al. (2010). Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Research, 70(11), 4335–4345.

    PubMed  CAS  Google Scholar 

  32. Rodriguez, P. C., & Ochoa, A. C. (2006). T cell dysfunction in cancer: role of myeloid cells and tumor cells regulating amino acid availability and oxidative stress. Seminars in Cancer Biology, 16(1), 66–72.

    PubMed  CAS  Google Scholar 

  33. Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Seminars in Cancer Biology, 16(1), 53–65.

    PubMed  CAS  Google Scholar 

  34. Youn, J. I., et al. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.

    CAS  Google Scholar 

  35. Almand, B., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.

    CAS  Google Scholar 

  36. Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 12(4), 253–268.

    PubMed  CAS  Google Scholar 

  37. Huang, B., et al. (2007). CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Letters, 252(1), 86–92.

    PubMed  CAS  Google Scholar 

  38. Yang, L., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.

    PubMed  CAS  Google Scholar 

  39. Shojaei, F., et al. (2007). Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature, 450(7171), 825–831.

    PubMed  CAS  Google Scholar 

  40. Sica, A., & Bronte, V. (2007). Altered macrophage differentiation and immune dysfunction in tumor development. The Journal of Clinical Investigation, 117(5), 1155–1166.

    PubMed  CAS  Google Scholar 

  41. Gao, D., et al. (2012). Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Research, 72(6), 1384–1394.

    PubMed  CAS  Google Scholar 

  42. Corzo, C. A., et al. (2010). HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453.

    PubMed  CAS  Google Scholar 

  43. Deng, J., et al. (2012). S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell, 21(5), 642–654.

    PubMed  CAS  Google Scholar 

  44. Movahedi, K., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.

    PubMed  CAS  Google Scholar 

  45. Dolcetti, L., et al. (2010). Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. European Journal of Immunology, 40(1), 22–35.

    PubMed  CAS  Google Scholar 

  46. Mauti, L. A., et al. (2011). Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation. The Journal of Clinical Investigation, 121(7), 2794–2807.

    PubMed  CAS  Google Scholar 

  47. Li, H., et al. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.

    CAS  Google Scholar 

  48. Hoechst, B., et al. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 50(3), 799–807.

    PubMed  CAS  Google Scholar 

  49. Zhu, J., Huang, X., & Yang, Y. (2012). Myeloid-derived suppressor cells regulate natural killer cell response to adenovirus-mediated gene transfer. Journal of Virology, 86, 13689–96.

    PubMed  CAS  Google Scholar 

  50. Liu, C., et al. (2007). Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood, 109(10), 4336–4342.

    PubMed  CAS  Google Scholar 

  51. Nagaraj, S., et al. (2012). Antigen-specific CD4(+) T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Research, 72(4), 928–938.

    PubMed  CAS  Google Scholar 

  52. Doedens, A. L., et al. (2010). Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Research, 70(19), 7465–7475.

    PubMed  CAS  Google Scholar 

  53. Corzo, C. A., et al. (2010). HIF-1alpha regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. The Journal of Experimental Medicine, 207(11), 2439–2453.

    PubMed  CAS  Google Scholar 

  54. Gallina, G., et al. (2006). Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. The Journal of Clinical Investigation, 116(10), 2777–2790.

    PubMed  CAS  Google Scholar 

  55. Watanabe, S., et al. (2008). Tumor-induced CD11b+Gr-1+ myeloid cells suppress T cell sensitization in tumor-draining lymph nodes. Journal of Immunology, 181(5), 3291–3300.

    CAS  Google Scholar 

  56. Nagaraj, S., et al. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature Medicine, 13(7), 828–835.

    PubMed  CAS  Google Scholar 

  57. Serafini, P., et al. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.

    PubMed  CAS  Google Scholar 

  58. Huang, B., et al. (2006). Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66(2), 1123–1131.

    PubMed  CAS  Google Scholar 

  59. Pan, P. Y., et al. (2010). Immune stimulatory receptor CD40 is required for T-cell suppression and T regulatory cell activation mediated by myeloid-derived suppressor cells in cancer. Cancer Research, 70(1), 99–108.

    PubMed  CAS  Google Scholar 

  60. Paez, D., et al. (2012). Cancer dormancy: a model of early dissemination and late cancer recurrence. Clinical Cancer Research, 18(3), 645–653.

    PubMed  Google Scholar 

  61. Pavlidis, N., & Pentheroudakis, G. (2012). Cancer of unknown primary site. Lancet, 379(9824), 1428–1435.

    PubMed  Google Scholar 

  62. Uhr, J. W., & Pantel, K. (2011). Controversies in clinical cancer dormancy. Proceedings of the National Academy of Sciences of the United States of America, 108(30), 12396–12400.

    PubMed  CAS  Google Scholar 

  63. Almog, N. (2010). Molecular mechanisms underlying tumor dormancy. Cancer Letters, 294(2), 139–146.

    PubMed  CAS  Google Scholar 

  64. Ringel, M. D. (2011). Metastatic dormancy and progression in thyroid cancer: targeting cells in the metastatic frontier. Thyroid, 21(5), 487–492.

    PubMed  Google Scholar 

  65. Chaput, N., & Thery, C. (2011). Exosomes: immune properties and potential clinical implementations. Seminars in Immunopathology, 33(5), 419–440.

    PubMed  CAS  Google Scholar 

  66. Ratajczak, J., et al. (2006). Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia, 20(9), 1487–1495.

    PubMed  CAS  Google Scholar 

  67. Peinado, H., Lavotshkin, S., & Lyden, D. (2011). The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Seminars in Cancer Biology, 21(2), 139–146.

    PubMed  CAS  Google Scholar 

  68. Peinado, H., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18, 883–91.

    PubMed  CAS  Google Scholar 

  69. Jung, T., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.

    PubMed  CAS  Google Scholar 

  70. Grange, C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71(15), 5346–5356.

    PubMed  CAS  Google Scholar 

  71. Gabrilovich, D. (2004). Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nature Reviews Immunology, 4(12), 941–952.

    PubMed  CAS  Google Scholar 

  72. Do, T. H., et al. (2004). Impaired circulating myeloid DCs from myeloma patients. Cytotherapy, 6(3), 196–203.

    PubMed  CAS  Google Scholar 

  73. Liu, C., et al. (2006). Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. Journal of Immunology, 176(3), 1375–1385.

    CAS  Google Scholar 

  74. Huber, V., et al. (2005). Human colorectal cancer cells induce T-cell death through release of proapoptotic microvesicles: role in immune escape. Gastroenterology, 128(7), 1796–1804.

    PubMed  CAS  Google Scholar 

  75. Valenti, R., et al. (2006). Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Research, 66(18), 9290–9298.

    PubMed  CAS  Google Scholar 

  76. Xiang, X., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer, 124(11), 2621–2633.

    CAS  Google Scholar 

  77. Liu, Y., et al. (2010). Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. The American Journal of Pathology, 176(5), 2490–2499.

    PubMed  CAS  Google Scholar 

  78. Yu, S., et al. (2007). Tumor exosomes inhibit differentiation of bone marrow dendritic cells. Journal of Immunology, 178(11), 6867–6875.

    CAS  Google Scholar 

  79. Park, J. E., et al. (2010). Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Molecular & Cellular Proteomics, 9(6), 1085–1099.

    CAS  Google Scholar 

  80. Wong, C. C., et al. (2012). Inhibitors of hypoxia-inducible factor 1 block breast cancer metastatic niche formation and lung metastasis. Journal of Molecular Medicine (Berlin), 90, 803–15.

    CAS  Google Scholar 

  81. Hiratsuka, S., et al. (2008). The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nature Cell Biology, 10(11), 1349–1355.

    PubMed  CAS  Google Scholar 

  82. Skog, J., et al. (2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 10(12), 1470–1476.

    PubMed  CAS  Google Scholar 

  83. Noerholm, M., et al. (2012). RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer, 12, 22.

    PubMed  CAS  Google Scholar 

  84. Khan, S., et al. (2012). Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One, 7(10), e46737.

    PubMed  CAS  Google Scholar 

  85. Chen, T., et al. (2011). Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine. Journal of Immunology, 186(4), 2219–2228.

    CAS  Google Scholar 

  86. Levy, E. M., Roberti, M. P., & Mordoh, J. (2011). Natural killer cells in human cancer: from biological functions to clinical applications. Journal of Biomedicine and Biotechnology, 2011, 676198.

    PubMed  Google Scholar 

  87. Jinushi, M., et al. (2008). MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1285–1290.

    PubMed  CAS  Google Scholar 

  88. Sibbitt, W. L., Jr., et al. (1984). Defects in natural killer cell activity and interferon response in human lung carcinoma and malignant melanoma. Cancer Research, 44(2), 852–856.

    PubMed  Google Scholar 

  89. Konjevic, G., et al. (2009). Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3-CD16+ NK cells. Biomarkers, 14(4), 258–270.

    PubMed  CAS  Google Scholar 

  90. Konjevic, G., et al. (2007). Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clinical & Experimental Metastasis, 24(1), 1–11.

    CAS  Google Scholar 

  91. Gill, S., Olson, J. A., & Negrin, R. S. (2009). Natural killer cells in allogeneic transplantation: effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biology of Blood and Marrow Transplantation, 15(7), 765–776.

    PubMed  CAS  Google Scholar 

  92. Burke, S., et al. (2010). New views on natural killer cell-based immunotherapy for melanoma treatment. Trends in Immunology, 31(9), 339–345.

    PubMed  CAS  Google Scholar 

  93. Koehn, T. A., et al. (2012). Increasing the clinical efficacy of NK and antibody-mediated cancer immunotherapy: potential predictors of successful clinical outcome based on observations in high-risk neuroblastoma. Frontiers in Pharmacology, 3, 91.

    PubMed  Google Scholar 

  94. Sawanobori, Y., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.

    PubMed  CAS  Google Scholar 

  95. Shojaei, F., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences, 106(16), 6742–6747.

    CAS  Google Scholar 

  96. Mazzoni, A., et al. (2002). Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. The Journal of Immunology, 168(2), 689–695.

    PubMed  CAS  Google Scholar 

  97. Yang, L., et al. (2004). Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.

    PubMed  CAS  Google Scholar 

  98. Melani, C., et al. (2007). Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Research, 67(23), 11438–11446.

    PubMed  CAS  Google Scholar 

  99. Sinha, P., et al. (2008). Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. The Journal of Immunology, 181(7), 4666–4675.

    PubMed  CAS  Google Scholar 

  100. Cheng, P., et al. (2008). Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. The Journal of Experimental Medicine, 205(10), 2235–2249.

    PubMed  CAS  Google Scholar 

  101. Terabe, M., et al. (2003). Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance. The Journal of Experimental Medicine, 198(11), 1741–1752.

    PubMed  CAS  Google Scholar 

  102. Xiang, X., et al. (2009). Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer, 124(11), 2621–2633.

    CAS  Google Scholar 

  103. Gabrilovich, D., et al. (1998). Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood, 92(11), 4150–4166.

    PubMed  CAS  Google Scholar 

  104. Kusmartsev, S., et al. (2008). Oxidative stress regulates expression of VEGFR1 in myeloid cells: link to tumor-induced immune suppression in renal cell carcinoma. Journal of Immunology, 181(1), 346–353.

    CAS  Google Scholar 

  105. Shojaei, F., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920.

    PubMed  CAS  Google Scholar 

  106. van Cruijsen, H., et al. (2007). Defective differentiation of myeloid and plasmacytoid dendritic cells in advanced cancer patients is not normalized by tyrosine kinase inhibition of the vascular endothelial growth factor receptor. Clinical & Developmental Immunology, 2007, 17315–17315.

    Google Scholar 

  107. Hiratsuka, S., et al. (2011). Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3725–3730.

    PubMed  CAS  Google Scholar 

  108. Schelter, F., et al. (2011). Tissue inhibitor of metalloproteinases-1-induced scattered liver metastasis is mediated by hypoxia-inducible factor-1alpha. Clinical & Experimental Metastasis, 28(2), 91–99.

    CAS  Google Scholar 

  109. Gil-Bernabé, A. M., et al. (2012). Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood, 119, 3164–75.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the members of the Möller and Smyth groups for valuable suggestions for the review. The authors acknowledge the generous support of a State Trustees Australia Foundation scholarship to JS; National Health and Medical Research Council (NH&MRC) Australia Fellowship, NH&MRC Program Grant, and Victorian Cancer Agency support to MJS; and an Association of International Cancer Research Project Grant and a National Breast Cancer Foundation Fellowship to AM.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark J. Smyth or Andreas Möller.

Additional information

Mark J. Smyth and Andreas Möller contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sceneay, J., Smyth, M.J. & Möller, A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 32, 449–464 (2013). https://doi.org/10.1007/s10555-013-9420-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9420-1

Keywords

Navigation