Skip to main content

Advertisement

Log in

Discoidin domain receptor tyrosine kinases: new players in cancer progression

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Almost all human cancers display dysregulated expression and/or function of one or more receptor tyrosine kinases (RTKs). The strong causative association between altered RTK function and cancer progression has been translated into novel therapeutic strategies that target these cell surface receptors in cancer. Yet, the full spectrum of RTKs that may alter the oncogenic process is not completely understood. Accumulating evidence suggests that a unique set of RTKs known as the discoidin domain receptors (DDRs) play a key role in cancer progression by regulating the interactions of tumor cells with their surrounding collagen matrix. The DDRs are the only RTKs that specifically bind to and are activated by collagen. DDRs control cell and tissue homeostasis by acting as collagen sensors, transducing signals that regulate cell polarity, tissue morphogenesis, and cell differentiation. In cancer, DDRs are hijacked by tumor cells to disrupt normal cell–matrix communication and initiate pro-migratory and pro-invasive programs. Importantly, several cancer types exhibit DDR mutations, which are thought to alter receptor function and contribute to cancer progression. Other evidence suggests that the actions of DDRs in cancer are complex, either promoting or suppressing tumor cell behavior in a DDR type/isoform specific- and context-dependent manner. Thus, there is still a considerable gap in our knowledge of DDR actions in cancer tissues. This review summarizes and discusses the current knowledge on DDR expression and function in cancer. It is hoped that this effort will encourage more research into these poorly understood but unique RTKs, which have the potential of becoming novel therapeutic targets in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnson, J. D., Edman, J. C., & Rutter, W. J. (1993). A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain. Proceedings of the National Academy of Sciences of the United States of America, 90(22), 10891.

    Article  PubMed  CAS  Google Scholar 

  2. Di Marco, E., Cutuli, N., Guerra, L., Cancedda, R., & De Luca, M. (1993). Molecular cloning of trkE, a novel trk-related putative tyrosine kinase receptor isolated from normal human keratinocytes and widely expressed by normal human tissues. The Journal of Biological Chemistry, 268(32), 24290–24295.

    PubMed  Google Scholar 

  3. Zerlin, M., Julius, M. A., & Goldfarb, M. (1993). NEP: A novel receptor-like tyrosine kinase expressed in proliferating neuroepithelia. Oncogene, 8(10), 2731–2739.

    PubMed  CAS  Google Scholar 

  4. Karn, T., Holtrich, U., Brauninger, A., Bohme, B., Wolf, G., Rubsamen-Waigmann, H., et al. (1993). Structure, expression and chromosomal mapping of TKT from man and mouse: A new subclass of receptor tyrosine kinases with a factor VIII-like domain. Oncogene, 8(12), 3433–3440.

    PubMed  CAS  Google Scholar 

  5. Perez, J. L., Shen, X., Finkernagel, S., Sciorra, L., Jenkins, N. A., Gilbert, D. J., et al. (1994). Identification and chromosomal mapping of a receptor tyrosine kinase with a putative phospholipid binding sequence in its ectodomain. Oncogene, 9(1), 211–219.

    PubMed  CAS  Google Scholar 

  6. Perez, J. L., Jing, S. Q., & Wong, T. W. (1996). Identification of two isoforms of the Cak receptor kinase that are coexpressed in breast tumor cell lines. Oncogene, 12(7), 1469–1477.

    PubMed  CAS  Google Scholar 

  7. Lai, C., & Lemke, G. (1994). Structure and expression of the Tyro 10 receptor tyrosine kinase. Oncogene, 9(3), 877–883.

    PubMed  CAS  Google Scholar 

  8. Laval, S., Butler, R., Shelling, A. N., Hanby, A. M., Poulsom, R., & Ganesan, T. S. (1994). Isolation and characterization of an epithelial-specific receptor tyrosine kinase from an ovarian cancer cell line. Cell Growth & Differentiation, 5(11), 1173–1183.

    CAS  Google Scholar 

  9. Sanchez, M. P., Tapley, P., Saini, S. S., He, B., Pulido, D., & Barbacid, M. (1994). Multiple tyrosine protein kinases in rat hippocampal neurons: Isolation of Ptk-3, a receptor expressed in proliferative zones of the developing brain. Proceedings of the National Academy of Sciences of the United States of America, 91(5), 1819–1823.

    Article  PubMed  CAS  Google Scholar 

  10. Alves, F., Vogel, W., Mossie, K., Millauer, B., Hofler, H., & Ullrich, A. (1995). Distinct structural characteristics of discoidin I subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene, 10(3), 609–618.

    PubMed  CAS  Google Scholar 

  11. Vogel, W., Gish, G. D., Alves, F., & Pawson, T. (1997). The discoidin domain receptor tyrosine kinases are activated by collagen. Molecular Cell, 1(1), 13–23.

    Article  PubMed  CAS  Google Scholar 

  12. Shrivastava, A., Radziejewski, C., Campbell, E., Kovac, L., McGlynn, M., Ryan, T. E., et al. (1997). An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Molecular Cell, 1(1), 25–34.

    Article  PubMed  CAS  Google Scholar 

  13. Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. doi:10.1016/j.cell.2010.06.011.

    Article  PubMed  CAS  Google Scholar 

  14. Kiedzierska, A., Smietana, K., Czepczynska, H., & Otlewski, J. (2007). Structural similarities and functional diversity of eukaryotic discoidin-like domains. Biochimica et Biophysica Acta, 1774(9), 1069–1078.

    PubMed  CAS  Google Scholar 

  15. Alexander, S., Sydow, L. M., Wessels, D., & Soll, D. R. (1992). Discoidin proteins of Dictyostelium are necessary for normal cytoskeletal organization and cellular morphology during aggregation. Differentiation, 51(3), 149–161.

    Article  PubMed  CAS  Google Scholar 

  16. Baumgartner, S., Hofmann, K., Chiquet-Ehrismann, R., & Bucher, P. (1998). The discoidin domain family revisited: New members from prokaryotes and a homology-based fold prediction. Protein Science, 7(7), 1626–1631.

    Article  PubMed  CAS  Google Scholar 

  17. Leitinger, B. (2011). Transmembrane collagen receptors. Annual Review of Cell and Developmental Biology, 27, 265–290. doi:10.1146/annurev-cellbio-092910-154013.

    Article  PubMed  CAS  Google Scholar 

  18. Playford, M. P., Butler, R. J., Wang, X. C., Katso, R. M., Cooke, I. E., & Ganesan, T. S. (1996). The genomic structure of discoidin receptor tyrosine kinase. Genome Research, 6(7), 620–627.

    Article  PubMed  CAS  Google Scholar 

  19. Alves, F., Saupe, S., Ledwon, M., Schaub, F., Hiddemann, W., & Vogel, W. F. (2001). Identification of two novel, kinase-deficient variants of discoidin domain receptor 1: Differential expression in human colon cancer cell lines. The FASEB Journal, 15(7), 1321–1323.

    CAS  Google Scholar 

  20. Curat, C. A., Eck, M., Dervillez, X., & Vogel, W. F. (2001). Mapping of epitopes in discoidin domain receptor 1 critical for collagen binding. The Journal of Biological Chemistry, 276(49), 45952–45958.

    Article  PubMed  CAS  Google Scholar 

  21. Agarwal, G., Kovac, L., Radziejewski, C., & Samuelsson, S. J. (2002). Binding of discoidin domain receptor 2 to collagen I: An atomic force microscopy investigation. Biochemistry, 41(37), 11091–11098.

    Article  PubMed  CAS  Google Scholar 

  22. Agarwal, G., Mihai, C., & Iscru, D. F. (2007). Interaction of discoidin domain receptor 1 with collagen type 1. Journal of Molecular Biology, 367(2), 443–455.

    Article  PubMed  CAS  Google Scholar 

  23. Leitinger, B. (2003). Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2. The Journal of Biological Chemistry, 278(19), 16761–16769.

    Article  PubMed  CAS  Google Scholar 

  24. Noordeen, N. A., Carafoli, F., Hohenester, E., Horton, M. A., & Leitinger, B. (2006). A transmembrane leucine zipper is required for activation of the dimeric receptor tyrosine kinase DDR1. The Journal of Biological Chemistry, 281(32), 22744–22751.

    Article  PubMed  CAS  Google Scholar 

  25. Mihai, C., Chotani, M., Elton, T. S., & Agarwal, G. (2009). Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy. Journal of Molecular Biology, 385(2), 432–445. doi:10.1016/j.jmb.2008.10.067.

    Article  PubMed  CAS  Google Scholar 

  26. Abdulhussein, R., Koo, D. H., & Vogel, W. F. (2008). Identification of disulfide-linked dimers of the receptor tyrosine kinase DDR1. The Journal of Biological Chemistry, 283(18), 12026–12033. doi:10.1074/jbc.M704592200.

    Article  PubMed  CAS  Google Scholar 

  27. Konitsiotis, A. D., Raynal, N., Bihan, D., Hohenester, E., Farndale, R. W., & Leitinger, B. (2008). Characterization of high affinity binding motifs for the discoidin domain receptor DDR2 in collagen. The Journal of Biological Chemistry, 283(11), 6861–6868.

    Article  PubMed  CAS  Google Scholar 

  28. Leitinger, B., Steplewski, A., & Fertala, A. (2004). The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. Journal of Molecular Biology, 344(4), 993–1003.

    Article  PubMed  CAS  Google Scholar 

  29. Leitinger, B., & Kwan, A. P. (2006). The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biology, 25(6), 355–364.

    Article  PubMed  CAS  Google Scholar 

  30. Hou, G., Vogel, W., & Bendeck, M. P. (2001). The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. The Journal of Clinical Investigation, 107(6), 727–735.

    Article  PubMed  CAS  Google Scholar 

  31. Farndale, R. W., Lisman, T., Bihan, D., Hamaia, S., Smerling, C. S., Pugh, N., et al. (2008). Cell-collagen interactions: The use of peptide Toolkits to investigate collagen-receptor interactions. Biochemical Society Transactions, 36(Pt 2), 241–250.

    Article  PubMed  CAS  Google Scholar 

  32. Xu, H., Raynal, N., Stathopoulos, S., Myllyharju, J., Farndale, R. W., & Leitinger, B. (2011). Collagen binding specificity of the discoidin domain receptors: Binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biology, 30(1), 16–26. doi:10.1016/j.matbio.2010.10.004.

    Article  PubMed  CAS  Google Scholar 

  33. Abdulhussein, R., McFadden, C., Fuentes-Prior, P., & Vogel, W. F. (2004). Exploring the collagen-binding site of the DDR1 tyrosine kinase receptor. The Journal of Biological Chemistry, 279(30), 31462–31470.

    Article  PubMed  CAS  Google Scholar 

  34. Ichikawa, O., Osawa, M., Nishida, N., Goshima, N., Nomura, N., & Shimada, I. (2007). Structural basis of the collagen-binding mode of discoidin domain receptor 2. EMBO Journal, 26(18), 4168–4176.

    Article  PubMed  CAS  Google Scholar 

  35. Carafoli, F., Bihan, D., Stathopoulos, S., Konitsiotis, A. D., Kvansakul, M., Farndale, R. W., et al. (2009). Crystallographic insight into collagen recognition by discoidin domain receptor 2. Structure, 17(12), 1573–1581. doi:10.1016/j.str.2009.10.012.

    Article  PubMed  CAS  Google Scholar 

  36. Lemeer, S., Bluwstein, A., Wu, Z., Leberfinger, J., Muller, K., Kramer, K., et al. (2011). Phosphotyrosine mediated protein interactions of the discoidin domain receptor 1. Journal of Proteomics. doi:10.1016/j.jprot.2011.10.007.

  37. L’Hote, C. G., Thomas, P. H., & Ganesan, T. S. (2002). Functional analysis of discoidin domain receptor 1: Effect of adhesion on DDR1 phosphorylation. The FASEB Journal, 16(2), 234–236.

    Google Scholar 

  38. Jonsson, M., & Andersson, T. (2001). Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. Journal of Cell Science, 114(Pt 11), 2043–2053.

    PubMed  CAS  Google Scholar 

  39. Dejmek, J., Dib, K., Jonsson, M., & Andersson, T. (2003). Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. International Journal of Cancer, 103(3), 344–351.

    Article  CAS  Google Scholar 

  40. Roarty, K., & Serra, R. (2007). Wnt5a is required for proper mammary gland development and TGF-beta-mediated inhibition of ductal growth. Development, 134(21), 3929–3939.

    Article  PubMed  CAS  Google Scholar 

  41. Lu, K. K., Trcka, D., & Bendeck, M. P. (2011). Collagen stimulates discoidin domain receptor 1-mediated migration of smooth muscle cells through Src. Cardiovascular Pathology, 20(2), 71–76. doi:10.1016/j.carpath.2009.12.006.

    Article  PubMed  CAS  Google Scholar 

  42. Ikeda, K., Wang, L. H., Torres, R., Zhao, H., Olaso, E., Eng, F. J., et al. (2002). Discoidin domain receptor 2 interacts with Src and Shc following its activation by type I collagen. The Journal of Biological Chemistry, 277(21), 19206–19212.

    Article  PubMed  CAS  Google Scholar 

  43. Yang, K., Kim, J. H., Kim, H. J., Park, I. S., Kim, I. Y., & Yang, B. S. (2005). Tyrosine 740 phosphorylation of discoidin domain receptor 2 by Src stimulates intramolecular autophosphorylation and Shc signaling complex formation. The Journal of Biological Chemistry, 280(47), 39058–39066.

    Article  PubMed  CAS  Google Scholar 

  44. Koo, D. H., McFadden, C., Huang, Y., Abdulhussein, R., Friese-Hamim, M., & Vogel, W. F. (2006). Pinpointing phosphotyrosine-dependent interactions downstream of the collagen receptor DDR1. FEBS Letters, 580(1), 15–22. doi:10.1016/j.febslet.2005.11.035.

    Article  PubMed  CAS  Google Scholar 

  45. Wang, C. Z., Su, H. W., Hsu, Y. C., Shen, M. R., & Tang, M. J. (2006). A discoidin domain receptor 1/SHP-2 signaling complex inhibits alpha2beta1-integrin-mediated signal transducers and activators of transcription 1/3 activation and cell migration. Molecular Biology of the Cell, 17(6), 2839–2852.

    Article  PubMed  CAS  Google Scholar 

  46. Yang, G., Li, Q., Ren, S., Lu, X., Fang, L., Zhou, W., et al. (2009). Proteomic, functional and motif-based analysis of C-terminal Src kinase-interacting proteins. Proteomics, 9(21), 4944–4961. doi:10.1002/pmic.200800762.

    Article  PubMed  CAS  Google Scholar 

  47. Huang, Y., Arora, P., McCulloch, C. A., & Vogel, W. F. (2009). The collagen receptor DDR1 regulates cell spreading and motility by associating with myosin IIA. Journal of Cell Science, 122(Pt 10), 1637–1646. doi:10.1242/jcs.046219.

    Article  PubMed  CAS  Google Scholar 

  48. Shintani, Y., Fukumoto, Y., Chaika, N., Svoboda, R., Wheelock, M. J., & Johnson, K. R. (2008). Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. The Journal of Cell Biology, 180(6), 1277–1289.

    Article  PubMed  CAS  Google Scholar 

  49. Hansen, C., Greengard, P., Nairn, A. C., Andersson, T., & Vogel, W. F. (2006). Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1. Experimental Cell Research, 312(20), 4011–4018. doi:10.1016/j.yexcr.2006.09.003.

    Article  PubMed  CAS  Google Scholar 

  50. Hilton, H. N., Stanford, P. M., Harris, J., Oakes, S. R., Kaplan, W., Daly, R. J., et al. (2008). KIBRA interacts with discoidin domain receptor 1 to modulate collagen-induced signalling. Biochimica et Biophysica Acta, 1783(3), 383–393.

    Article  PubMed  CAS  Google Scholar 

  51. Dejmek, J., Leandersson, K., Manjer, J., Bjartell, A., Emdin, S. O., Vogel, W. F., et al. (2005). Expression and signaling activity of Wnt-5a/discoidin domain receptor-1 and Syk plays distinct but decisive roles in breast cancer patient survival. Clinical Cancer Research, 11(2 Pt 1), 520–528.

    PubMed  CAS  Google Scholar 

  52. Kim, H. G., Hwang, S. Y., Aaronson, S. A., Mandinova, A., & Lee, S. W. (2011). DDR1 receptor tyrosine kinase promotes prosurvival pathway through Notch1 activation. The Journal of Biological Chemistry, 286(20), 17672–17681. doi:10.1074/jbc.M111.236612.

    Article  PubMed  CAS  Google Scholar 

  53. Eswaramoorthy, R., Wang, C. K., Chen, W. C., Tang, M. J., Ho, M. L., Hwang, C. C., et al. (2010). DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. Journal of Cellular Physiology, 224(2), 387–397. doi:10.1002/jcp.22134.

    Article  PubMed  CAS  Google Scholar 

  54. Hidalgo-Carcedo, C., Hooper, S., Chaudhry, S. I., Williamson, P., Harrington, K., Leitinger, B., et al. (2011). Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nature Cell Biology, 13(1), 49–58. doi:10.1038/ncb2133.

    Article  PubMed  CAS  Google Scholar 

  55. Olaso, E., Lin, H. C., Wang, L. H., & Friedman, S. L. (2011). Impaired dermal wound healing in discoidin domain receptor 2-deficient mice associated with defective extracellular matrix remodeling. Fibrogenesis & Tissue Repair, 4(1), 5. doi:10.1186/1755-1536-4-5.

    Article  CAS  Google Scholar 

  56. Wang, C. Z., Hsu, Y. M., & Tang, M. J. (2005). Function of discoidin domain receptor I in HGF-induced branching tubulogenesis of MDCK cells in collagen gel. Journal of Cellular Physiology, 203(1), 295–304.

    Article  PubMed  CAS  Google Scholar 

  57. Wang, C. Z., Yeh, Y. C., & Tang, M. J. (2009). DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading. American Journal of Physiology. Cell Physiology, 297(2), C419–C429. doi:10.1152/ajpcell.00101.2009.

    Article  PubMed  CAS  Google Scholar 

  58. Yeh, Y. C., Wang, C. Z., & Tang, M. J. (2009). Discoidin domain receptor 1 activation suppresses alpha2beta1 integrin-dependent cell spreading through inhibition of Cdc42 activity. Journal of Cellular Physiology, 218(1), 146–156. doi:10.1002/jcp.21578.

    Article  PubMed  CAS  Google Scholar 

  59. Yeh, Y. C., Wu, C. C., Wang, Y. K., & Tang, M. J. (2011). DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Molecular Biology of the Cell, 22(7), 940–953. doi:10.1091/mbc.E10-08-0678.

    Article  PubMed  CAS  Google Scholar 

  60. Vonk, L. A., Doulabi, B. Z., Huang, C., Helder, M. N., Everts, V., & Bank, R. A. (2011). Collagen-induced expression of collagenase-3 by primary chondrocytes is mediated by integrin α1 and discoidin domain receptor 2: A protein kinase C-dependent pathway. Rheumatology, 50(3), 463–472. doi:10.1093/rheumatology/keq305.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang, Y., Su, J., Yu, J., Bu, X., Ren, T., Liu, X., et al. (2011). An essential role of discoidin domain receptor 2 (DDR2) in osteoblast differentiation and chondrocyte maturation via modulation of Runx2 activation. Journal of Bone and Mineral Research, 26(3), 604–617. doi:10.1002/jbmr.225.

    Article  PubMed  CAS  Google Scholar 

  62. Lin, K. L., Chou, C. H., Hsieh, S. C., Hwa, S. Y., Lee, M. T., & Wang, F. F. (2010). Transcriptional upregulation of DDR2 by ATF4 facilitates osteoblastic differentiation through p38 MAPK-mediated Runx2 activation. Journal of Bone and Mineral Research, 25(11), 2489–2503. doi:10.1002/jbmr.159.

    Article  PubMed  CAS  Google Scholar 

  63. Ongusaha, P. P., Kim, J. I., Fang, L., Wong, T. W., Yancopoulos, G. D., Aaronson, S. A., et al. (2003). p53 induction and activation of DDR1 kinase counteract p53-mediated apoptosis and influence p53 regulation through a positive feedback loop. EMBO Journal, 22(6), 1289–1301.

    Article  PubMed  CAS  Google Scholar 

  64. Das, S., Ongusaha, P. P., Yang, Y. S., Park, J. M., Aaronson, S. A., & Lee, S. W. (2006). Discoidin domain receptor 1 receptor tyrosine kinase induces cyclooxygenase-2 and promotes chemoresistance through nuclear factor-kappaB pathway activation. Cancer Research, 66(16), 8123–8130.

    Article  PubMed  CAS  Google Scholar 

  65. Vogel, W., Brakebusch, C., Fassler, R., Alves, F., Ruggiero, F., & Pawson, T. (2000). Discoidin domain receptor 1 is activated independently of beta(1) integrin. The Journal of Biological Chemistry, 275(8), 5779–5784.

    Article  PubMed  CAS  Google Scholar 

  66. Suh, H. N., & Han, H. J. (2011). Collagen I regulates the self-renewal of mouse embryonic stem cells through alpha2beta1 integrin- and DDR1-dependent Bmi-1. Journal of Cellular Physiology. doi:10.1002/jcp.22697.

  67. Chetoui, N., El Azreq, M. A., Boisvert, M., Bergeron, M. E., & Aoudjit, F. (2011). Discoidin domain receptor 1 expression in activated T cells is regulated by the ERK MAP kinase signaling pathway. Journal of Cellular Biochemistry, 112(12), 3666–3674. doi:10.1002/jcb.23300.

    Article  PubMed  CAS  Google Scholar 

  68. Ruiz, P. A., & Jarai, G. (2011). Collagen I induces discoidin domain receptor (DDR) 1 expression through DDR2 and a JAK2-ERK1/2-mediated mechanism in primary human lung fibroblasts. The Journal of Biological Chemistry, 286(15), 12912–12923. doi:10.1074/jbc.M110.143693.

    Article  PubMed  CAS  Google Scholar 

  69. Maeyama, M., Koga, H., Selvendiran, K., Yanagimoto, C., Hanada, S., Taniguchi, E., et al. (2008). Switching in discoid domain receptor expressions in SLUG-induced epithelial–mesenchymal transition. Cancer, 113(10), 2823–2831. doi:10.1002/cncr.23900.

    Article  PubMed  CAS  Google Scholar 

  70. Camara, J., & Jarai, G. (2010). Epithelial–mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis & Tissue Repair, 3(1), 2. doi:10.1186/1755-1536-3-2.

    Article  CAS  Google Scholar 

  71. Taube, J. H., Herschkowitz, J. I., Komurov, K., Zhou, A. Y., Gupta, S., Yang, J., et al. (2010). Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 107(35), 15449–15454. doi:10.1073/pnas.1004900107.

    Article  PubMed  CAS  Google Scholar 

  72. Sakuma, S., Saya, H., Tada, M., Nakao, M., Fujiwara, T., Roth, J. A., et al. (1996). Receptor protein tyrosine kinase DDR is up-regulated by p53 protein. FEBS Letters, 398(2–3), 165–169.

    Article  PubMed  CAS  Google Scholar 

  73. Martinez-Marignac, V. L., Rodrigue, A., Davidson, D., Couillard, M., Al-Moustafa, A. E., Abramovitz, M., et al. (2011). The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells. PloS One, 6(1), e16394. doi:10.1371/journal.pone.0016394.

    Article  PubMed  CAS  Google Scholar 

  74. Roig, B., Moyano, S., Martorell, L., Costas, J., & Vilella, E. (2011). The Discoidin domain receptor 1 gene has a functional A2RE sequence. Journal of Neurochemistry. doi:10.1111/j.1471-4159.2011.07580.x.

  75. Shen, Q., Cicinnati, V. R., Zhang, X., Iacob, S., Weber, F., Sotiropoulos, G. C., et al. (2010). Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Molecular Cancer, 9, 227. doi:10.1186/1476-4598-9-227.

    Article  PubMed  CAS  Google Scholar 

  76. Chen, S. C., Wang, B. W., Wang, D. L., & Shyu, K. G. (2008). Hypoxia induces discoidin domain receptor-2 expression via the p38 pathway in vascular smooth muscle cells to increase their migration. Biochemical and Biophysical Research Communications, 374(4), 662–667. doi:10.1016/j.bbrc.2008.07.092.

    Article  PubMed  CAS  Google Scholar 

  77. Shyu, K. G., Wang, B. W., & Chang, H. (2009). Hyperbaric oxygen activates discoidin domain receptor 2 via tumour necrosis factor-alpha and the p38 MAPK pathway to increase vascular smooth muscle cell migration through matrix metalloproteinase 2. Clinical Science, 116(7), 575–583. doi:10.1042/CS20080215.

    Article  PubMed  CAS  Google Scholar 

  78. Chua, H. H., Yeh, T. H., Wang, Y. P., Huang, Y. T., Sheen, T. S., Lo, Y. C., et al. (2008). Upregulation of discoidin domain receptor 2 in nasopharyngeal carcinoma. Head & Neck, 30(4), 427–436.

    Article  Google Scholar 

  79. Olaso, E., Ikeda, K., Eng, F. J., Xu, L., Wang, L. H., Lin, H. C., et al. (2001). DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. The Journal of Clinical Investigation, 108(9), 1369–1378.

    PubMed  CAS  Google Scholar 

  80. Sekiya, Y., Ogawa, T., Yoshizato, K., Ikeda, K., & Kawada, N. (2011). Suppression of hepatic stellate cell activation by microRNA-29b. Biochemical and Biophysical Research Communications, 412(1), 74–79. doi:10.1016/j.bbrc.2011.07.041.

    Article  PubMed  CAS  Google Scholar 

  81. van Kilsdonk, J. W., van Kempen, L. C., van Muijen, G. N., Ruiter, D. J., & Swart, G. W. (2010). Soluble adhesion molecules in human cancers: Sources and fates. European Journal of Cell Biology, 89(6), 415–427. doi:10.1016/j.ejcb.2009.11.026.

    Article  PubMed  CAS  Google Scholar 

  82. Vogel, W. F. (2002). Ligand-induced shedding of discoidin domain receptor 1. FEBS Letters, 514(2–3), 175–180.

    Article  PubMed  CAS  Google Scholar 

  83. Slack, B. E., Siniaia, M. S., & Blusztajn, J. K. (2006). Collagen type I selectively activates ectodomain shedding of the discoidin domain receptor 1: Involvement of Src tyrosine kinase. Journal of Cellular Biochemistry, 98(3), 672–684.

    Article  PubMed  CAS  Google Scholar 

  84. Flynn, L. A., Blissett, A. R., Calomeni, E. P., & Agarwal, G. (2010). Inhibition of collagen fibrillogenesis by cells expressing soluble extracellular domains of DDR1 and DDR2. Journal of Molecular Biology, 395(3), 533–543. doi:10.1016/j.jmb.2009.10.073.

    Article  PubMed  CAS  Google Scholar 

  85. Lund, A. W., Stegemann, J. P., & Plopper, G. E. (2009). Mesenchymal stem cells sense three dimensional type I collagen through discoidin domain receptor 1. The Open Stem Cell Journal, 1, 40–53. doi:10.2174/1876893800901010040.

    PubMed  CAS  Google Scholar 

  86. Torkamani, A., Verkhivker, G., & Schork, N. J. (2009). Cancer driver mutations in protein kinase genes. Cancer Letters, 281(2), 117–127. doi:10.1016/j.canlet.2008.11.008.

    Article  PubMed  CAS  Google Scholar 

  87. Hammerman, P. S., et al. (2011). Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discovery, 1(1), 78–89.

    Article  PubMed  CAS  Google Scholar 

  88. Ford, C. E., Lau, S. K., Zhu, C. Q., Andersson, T., Tsao, M. S., & Vogel, W. F. (2007). Expression and mutation analysis of the discoidin domain receptors 1 and 2 in non-small cell lung carcinoma. British Journal of Cancer, 96(5), 808–814.

    Article  PubMed  CAS  Google Scholar 

  89. Yang, S. H., Baek, H. A., Lee, H. J., Park, H. S., Jang, K. Y., Kang, M. J., et al. (2010). Discoidin domain receptor 1 is associated with poor prognosis of non-small cell lung carcinomas. Oncology Reports, 24(2), 311–319.

    PubMed  CAS  Google Scholar 

  90. Valencia, K., Ormazabal, C., Zandueta, C., Luis-Ravelo, D., Anton, I., Pajares, M. J., et al. (2012). Inhibition of collagen receptor discoidin domain receptor-1 (DDR1) reduces cell survival. Homing and colonization in lung cancer bone metastasis. Clinical Cancer Research. doi:10.1158/1078-0432.CCR-11-1686.

  91. Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., et al. (2007). Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131(6), 1190–1203. doi:10.1016/j.cell.2007.11.025.

    Article  PubMed  CAS  Google Scholar 

  92. Davies, H., Hunter, C., Smith, R., Stephens, P., Greenman, C., Bignell, G., et al. (2005). Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Research, 65(17), 7591–7595. doi:10.1158/0008-5472.CAN-05-1855.

    PubMed  CAS  Google Scholar 

  93. Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., et al. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069–1075. doi:10.1038/nature07423.

    Article  PubMed  CAS  Google Scholar 

  94. Vogel, W. F., Aszodi, A., Alves, F., & Pawson, T. (2001). Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Molecular and Cellular Biology, 21(8), 2906–2917.

    Article  PubMed  CAS  Google Scholar 

  95. Barker, K. T., Martindale, J. E., Mitchell, P. J., Kamalati, T., Page, M. J., Phippard, D. J., et al. (1995). Expression patterns of the novel receptor-like tyrosine kinase, DDR, in human breast tumours. Oncogene, 10(3), 569–575.

    PubMed  CAS  Google Scholar 

  96. Neuhaus, B., Buhren, S., Bock, B., Alves, F., Vogel, W. F., & Kiefer, F. (2011). Migration inhibition of mammary epithelial cells by Syk is blocked in the presence of DDR1 receptors. Cellular and Molecular Life Sciences: CMLS. doi:10.1007/s00018-011-0676-8.

  97. Turashvili, G., Bouchal, J., Baumforth, K., Wei, W., Dziechciarkova, M., Ehrmann, J., et al. (2007). Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer, 7, 55. doi:10.1186/1471-2407-7-55.

    Article  PubMed  CAS  Google Scholar 

  98. Weiner, H. L., Rothman, M., Miller, D. C., & Ziff, E. B. (1996). Pediatric brain tumors express multiple receptor tyrosine kinases including novel cell adhesion kinases. Pediatric Neurosurgery, 25(2), 64–71. discussion 71-62.

    Article  PubMed  CAS  Google Scholar 

  99. Weiner, H. L., Huang, H., Zagzag, D., Boyce, H., Lichtenbaum, R., & Ziff, E. B. (2000). Consistent and selective expression of the discoidin domain receptor-1 tyrosine kinase in human brain tumors. Neurosurgery, 47(6), 1400–1409.

    Article  PubMed  CAS  Google Scholar 

  100. Ram, R., Lorente, G., Nikolich, K., Urfer, R., Foehr, E., & Nagavarapu, U. (2006). Discoidin domain receptor-1a (DDR1a) promotes glioma cell invasion and adhesion in association with matrix metalloproteinase-2. Journal of Neuro-Oncology, 76(3), 239–248.

    Article  PubMed  CAS  Google Scholar 

  101. Yamanaka, R., Arao, T., Yajima, N., Tsuchiya, N., Homma, J., Tanaka, R., et al. (2006). Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene, 25(44), 5994–6002.

    Article  PubMed  CAS  Google Scholar 

  102. Yoshida, D., & Teramoto, A. (2007). Enhancement of pituitary adenoma cell invasion and adhesion is mediated by discoidin domain receptor-1. Journal of Neuro-Oncology, 82(1), 29–40.

    Article  PubMed  CAS  Google Scholar 

  103. Heinzelmann-Schwarz, V. A., Gardiner-Garden, M., Henshall, S. M., Scurry, J., Scolyer, R. A., Davies, M. J., et al. (2004). Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clinical Cancer Research, 10(13), 4427–4436.

    Article  PubMed  CAS  Google Scholar 

  104. Quan, J., Yahata, T., Adachi, S., Yoshihara, K., & Tanaka, K. (2011). Identification of receptor tyrosine kinase, discoidin domain receptor 1 (DDR1), as a potential biomarker for serous ovarian cancer. International Journal of Molecular Sciences, 12(2), 971–982. doi:10.3390/ijms12020971.

    Article  PubMed  CAS  Google Scholar 

  105. Colas, E., Perez, C., Cabrera, S., Pedrola, N., Monge, M., Castellvi, J., et al. (2011). Molecular markers of endometrial carcinoma detected in uterine aspirates. International Journal of Cancer. Journal International du Cancer, 129(10), 2435–2444. doi:10.1002/ijc.25901.

    Article  PubMed  CAS  Google Scholar 

  106. Nemoto, T., Ohashi, K., Akashi, T., Johnson, J. D., & Hirokawa, K. (1997). Overexpression of protein tyrosine kinases in human esophageal cancer. Pathobiology, 65(4), 195–203.

    Article  PubMed  CAS  Google Scholar 

  107. Squire, J. A., Bayani, J., Luk, C., Unwin, L., Tokunaga, J., MacMillan, C., et al. (2002). Molecular cytogenetic analysis of head and neck squamous cell carcinoma: By comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head & Neck, 24(9), 874–887.

    Article  Google Scholar 

  108. Gu, T. L., Deng, X., Huang, F., Tucker, M., Crosby, K., Rimkunas, V., et al. (2011). Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PloS One, 6(1), e15640. doi:10.1371/journal.pone.0015640.

    Article  PubMed  CAS  Google Scholar 

  109. Couvelard, A., Hu, J., Steers, G., O’Toole, D., Sauvanet, A., Belghiti, J., et al. (2006). Identification of potential therapeutic targets by gene-expression profiling in pancreatic endocrine tumors. Gastroenterology, 131(5), 1597–1610.

    Article  PubMed  CAS  Google Scholar 

  110. Shimada, K., Nakamura, M., Ishida, E., Higuchi, T., Yamamoto, H., Tsujikawa, K., et al. (2008). Prostate cancer antigen-1 contributes to cell survival and invasion though discoidin receptor 1 in human prostate cancer. Cancer Science, 99(1), 39–45.

    PubMed  CAS  Google Scholar 

  111. Rodrigues, R., Roque, L., Espadinha, C., Pinto, A., Domingues, R., Dinis, J., et al. (2007). Comparative genomic hybridization, BRAF, RAS, RET, and oligo-array analysis in aneuploid papillary thyroid carcinomas. Oncology Reports, 18(4), 917–926.

    PubMed  CAS  Google Scholar 

  112. Hajdu, M., Singer, S., Maki, R. G., Schwartz, G. K., Keohan, M. L., & Antonescu, C. R. (2010). IGF2 over-expression in solitary fibrous tumours is independent of anatomical location and is related to loss of imprinting. The Journal of Pathology, 221(3), 300–307. doi:10.1002/path.2715.

    Article  PubMed  CAS  Google Scholar 

  113. Chiaretti, S., Li, X., Gentleman, R., Vitale, A., Wang, K. S., Mandelli, F., et al. (2005). Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation. Clinical Cancer Research, 11(20), 7209–7219. doi:10.1158/1078-0432.CCR-04-2165.

    Article  PubMed  CAS  Google Scholar 

  114. Tomasson, M. H., Xiang, Z., Walgren, R., Zhao, Y., Kasai, Y., Miner, T., et al. (2008). Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia. Blood, 111(9), 4797–4808. doi:10.1182/blood-2007-09-113027.

    Article  PubMed  CAS  Google Scholar 

  115. Loriaux, M. M., Levine, R. L., Tyner, J. W., Frohling, S., Scholl, C., Stoffregen, E. P., et al. (2008). High-throughput sequence analysis of the tyrosine kinome in acute myeloid leukemia. Blood, 111(9), 4788–4796. doi:10.1182/blood-2007-07-101394.

    Article  PubMed  CAS  Google Scholar 

  116. Renne, C., Willenbrock, K., Kuppers, R., Hansmann, M. L., & Brauninger, A. (2005). Autocrine- and paracrine-activated receptor tyrosine kinases in classic Hodgkin lymphoma. Blood, 105(10), 4051–4059. doi:10.1182/blood-2004-10-4008.

    Article  PubMed  CAS  Google Scholar 

  117. Willenbrock, K., Kuppers, R., Renne, C., Brune, V., Eckerle, S., Weidmann, E., et al. (2006). Common features and differences in the transcriptome of large cell anaplastic lymphoma and classical Hodgkin’s lymphoma. Haematologica, 91(5), 596–604.

    PubMed  CAS  Google Scholar 

  118. Labrador, J. P., Azcoitia, V., Tuckermann, J., Lin, C., Olaso, E., Manes, S., et al. (2001). The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Reports, 2(5), 446–452.

    PubMed  CAS  Google Scholar 

  119. Bargal, R., Cormier-Daire, V., Ben-Neriah, Z., Le Merrer, M., Sosna, J., Melki, J., et al. (2009). Mutations in DDR2 gene cause SMED with short limbs and abnormal calcifications. American Journal of Human Genetics, 84(1), 80–84. doi:10.1016/j.ajhg.2008.12.004.

    Article  PubMed  CAS  Google Scholar 

  120. Ali, B. R., Xu, H., Akawi, N. A., John, A., Karuvantevida, N. S., Langer, R., et al. (2010). Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients. Human Molecular Genetics, 19(11), 2239–2250. doi:10.1093/hmg/ddq103.

    Article  PubMed  CAS  Google Scholar 

  121. Kano, K., Marin de Evsikova, C., Young, J., Wnek, C., Maddatu, T. P., Nishina, P. M., et al. (2008). A novel dwarfism with gonadal dysfunction due to loss-of-function allele of the collagen receptor gene, Ddr2, in the mouse. Molecular Endocrinology, 22(8), 1866–1880. doi:10.1210/me.2007-0310.

    Article  PubMed  CAS  Google Scholar 

  122. Matsumura, H., Kano, K., Marin de Evsikova, C., Young, J. A., Nishina, P. M., Naggert, J. K., et al. (2009). Transcriptome analysis reveals an unexpected role of a collagen tyrosine kinase receptor gene, Ddr2, as a regulator of ovarian function. Physiological Genomics, 39(2), 120–129. doi:10.1152/physiolgenomics.00073.2009.

    Article  PubMed  CAS  Google Scholar 

  123. Kano, K., Kitamura, A., Matsuwaki, T., Morimatsu, M., & Naito, K. (2010). Discoidin domain receptor 2 (DDR2) is required for maintenance of spermatogenesis in male mice. Molecular Reproduction and Development, 77(1), 29–37. doi:10.1002/mrd.21093.

    Article  PubMed  CAS  Google Scholar 

  124. Faraci-Orf, E., McFadden, C., & Vogel, W. F. (2006). DDR1 signaling is essential to sustain Stat5 function during lactogenesis. Journal of Cellular Biochemistry, 97(1), 109–121. doi:10.1002/jcb.20618.

    Article  PubMed  CAS  Google Scholar 

  125. Gross, O., Beirowski, B., Harvey, S. J., McFadden, C., Chen, D., Tam, S., et al. (2004). DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney International, 66(1), 102–111.

    Article  PubMed  CAS  Google Scholar 

  126. Curat, C. A., & Vogel, W. F. (2002). Discoidin domain receptor 1 controls growth and adhesion of mesangial cells. Journal of the American Society of Nephrology, 13(11), 2648–2656.

    Article  PubMed  CAS  Google Scholar 

  127. Meyer zum Gottesberge, A. M., Gross, O., Becker-Lendzian, U., Massing, T., & Vogel, W. F. (2008). Inner ear defects and hearing loss in mice lacking the collagen receptor DDR1. Laboratory Investigation, 88(1), 27–37.

    Article  PubMed  CAS  Google Scholar 

  128. Olaso, E., Labrador, J. P., Wang, L., Ikeda, K., Eng, F. J., Klein, R., et al. (2002). Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. The Journal of Biological Chemistry, 277(5), 3606–3613.

    Article  PubMed  CAS  Google Scholar 

  129. Olaso, E., Arteta, B., Benedicto, A., Crende, O., & Friedman, S. L. (2011). Loss of discoidin domain receptor 2 promotes hepatic fibrosis after chronic carbon tetrachloride through altered paracrine interactions between hepatic stellate cells and liver-associated macrophages. The American Journal of Pathology, 179(6), 2894–2904. doi:10.1016/j.ajpath.2011.09.002.

    Article  PubMed  CAS  Google Scholar 

  130. Badiola, I., Olaso, E., Crende, O., Friedman, S. L., & Vidal-Vanaclocha, F. (2011). Discoidin domain receptor 2 deficiency predisposes hepatic tissue to colon carcinoma metastasis. Gut. doi:10.1136/gutjnl-2011-300810.

  131. Roberts, M. E., Magowan, L., Hall, I. P., & Johnson, S. R. (2011). Discoidin domain receptor 1 regulates bronchial epithelial repair and matrix metalloproteinase production. The European Respiratory Journal, 37(6), 1482–1493. doi:10.1183/09031936.00039710.

    Article  PubMed  CAS  Google Scholar 

  132. Dang, N., Hu, J., Liu, X., Li, X., Ji, S., Zhang, W., et al. (2009). CD167 acts as a novel costimulatory receptor in T-cell activation. Journal of Immunotherapy, 32(8), 773–784. doi:10.1097/CJI.0b013e3181acea46.

    Article  PubMed  CAS  Google Scholar 

  133. Shyu, K. G., Wang, B. W., Kuan, P., & Chang, H. (2008). RNA interference for discoidin domain receptor 2 attenuates neointimal formation in balloon injured rat carotid artery. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(8), 1447–1453. doi:10.1161/ATVBAHA.108.165993.

    Article  PubMed  CAS  Google Scholar 

  134. Badiola, I., Villace, P., Basaldua, I., & Olaso, E. (2011). Downregulation of discoidin domain receptor 2 in A375 human melanoma cells reduces its experimental liver metastasis ability. Oncology Reports, 26(4), 971–978. doi:10.3892/or.2011.1356.

    PubMed  CAS  Google Scholar 

  135. Franco, C., Ahmad, P. J., Hou, G., Wong, E., & Bendeck, M. P. (2010). Increased cell and matrix accumulation during atherogenesis in mice with vessel wall-specific deletion of discoidin domain receptor 1. Circulation Research, 106(11), 1775–1783. doi:10.1161/CIRCRESAHA.109.213637.

    Article  PubMed  CAS  Google Scholar 

  136. Wall, S. J., Werner, E., Werb, Z., & DeClerck, Y. A. (2005). Discoidin domain receptor 2 mediates tumor cell cycle arrest induced by fibrillar collagen. The Journal of Biological Chemistry, 280(48), 40187–40194.

    Article  PubMed  CAS  Google Scholar 

  137. Bhatt, R. S., Tomoda, T., Fang, Y., & Hatten, M. E. (2000). Discoidin domain receptor 1 functions in axon extension of cerebellar granule neurons. Genes & Development, 14(17), 2216–2228.

    Article  CAS  Google Scholar 

  138. Suzuki, N., Ando, S., Sumida, K., Horie, N., & Saito, K. (2011). Analysis of altered gene expression specific to embryotoxic chemical treatment during embryonic stem cell differentiation into myocardiac and neural cells. The Journal of Toxicological Sciences, 36(5), 569–585.

    Article  PubMed  CAS  Google Scholar 

  139. Franco-Pons, N., Tomas, J., Roig, B., Auladell, C., Martorell, L., & Vilella, E. (2009). Discoidin domain receptor 1, a tyrosine kinase receptor, is upregulated in an experimental model of remyelination and during oligodendrocyte differentiation in vitro. Journal of Molecular Neuroscience: MN, 38(1), 2–11. doi:10.1007/s12031-008-9151-x.

    Article  PubMed  CAS  Google Scholar 

  140. Zurakowski, H., Gagnon, A., Landry, A., Layne, M. D., & Sorisky, A. (2007). Discoidin domain receptor 2 impairs insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation and glucose uptake in 3T3-L1 adipocytes. Hormone and Metabolic Research, 39(8), 575–581.

    Article  PubMed  CAS  Google Scholar 

  141. Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial–mesenchymal transitions in development and disease. Cell, 139(5), 871–890. doi:10.1016/j.cell.2009.11.007.

    Article  PubMed  CAS  Google Scholar 

  142. Goldsmith, E. C., Zhang, X., Watson, J., Hastings, J., & Potts, J. D. (2010). The collagen receptor DDR2 is expressed during early cardiac development. Anatomical Record, 293(5), 762–769. doi:10.1002/ar.20922.

    Article  CAS  Google Scholar 

  143. Zhou, B., von Gise, A., Ma, Q., Hu, Y. W., & Pu, W. T. (2010). Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Developmental Biology, 338(2), 251–261. doi:10.1016/j.ydbio.2009.12.007.

    Article  PubMed  CAS  Google Scholar 

  144. Walsh, L. A., Nawshad, A., & Medici, D. (2011). Discoidin domain receptor 2 is a critical regulator of epithelial–mesenchymal transition. Matrix Biology, 30(4), 243–247. doi:10.1016/j.matbio.2011.03.007.

    Article  PubMed  CAS  Google Scholar 

  145. Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24(14), 2375–2385. doi:10.1038/sj.onc.1208429.

    Article  PubMed  CAS  Google Scholar 

  146. Blick, T., Hugo, H., Widodo, E., Waltham, M., Pinto, C., Mani, S. A., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/−) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252. doi:10.1007/s10911-010-9175-z.

    Article  PubMed  Google Scholar 

  147. Hou, G., Vogel, W. F., & Bendeck, M. P. (2002). Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metalloproteinase expression. Circulation Research, 90(11), 1147–1149.

    Article  PubMed  CAS  Google Scholar 

  148. Kamohara, H., Yamashiro, S., Galligan, C., & Yoshimura, T. (2001). Discoidin domain receptor 1 isoform-a (DDR1alpha) promotes migration of leukocytes in three-dimensional collagen lattices. The FASEB Journal, 15(14), 2724–2726.

    CAS  Google Scholar 

  149. Fukunaga-Kalabis, M., Martinez, G., Liu, Z. J., Kalabis, J., Mrass, P., Weninger, W., et al. (2006). CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1. The Journal of Cell Biology, 175(4), 563–569.

    Article  PubMed  CAS  Google Scholar 

  150. Franco, C., Britto, K., Wong, E., Hou, G., Zhu, S. N., Chen, M., et al. (2009). Discoidin domain receptor 1 on bone marrow-derived cells promotes macrophage accumulation during atherogenesis. Circulation Research, 105(11), 1141–1148. doi:10.1161/CIRCRESAHA.109.207357.

    Article  PubMed  CAS  Google Scholar 

  151. Song, S., Shackel, N. A., Wang, X. M., Ajami, K., McCaughan, G. W., & Gorrell, M. D. (2011). Discoidin domain receptor 1: Isoform expression and potential functions in cirrhotic human liver. The American Journal of Pathology, 178(3), 1134–1144. doi:10.1016/j.ajpath.2010.11.068.

    Article  PubMed  CAS  Google Scholar 

  152. Hou, G., Wang, D., & Bendeck, M. P. (2011). Deletion of discoidin domain receptor 2 does not affect smooth muscle cell adhesion, migration, or proliferation in response to type I collagen. Cardiovascular Pathology: the Official Journal of the Society for Cardiovascular Pathology. doi:10.1016/j.carpath.2011.07.006.

  153. Bhadriraju, K., Chung, K. H., Spurlin, T. A., Haynes, R. J., Elliott, J. T., & Plant, A. L. (2009). The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells. Biomaterials, 30(35), 6687–6694. doi:10.1016/j.biomaterials.2009.08.036.

    Article  PubMed  CAS  Google Scholar 

  154. Zamir, E., & Geiger, B. (2001). Components of cell–matrix adhesions. Journal of Cell Science, 114(Pt 20), 3577–3579.

    PubMed  CAS  Google Scholar 

  155. Etienne, J., & Duperray, A. (2011). Initial dynamics of cell spreading are governed by dissipation in the actin cortex. Biophysical Journal, 101(3), 611–621. doi:10.1016/j.bpj.2011.06.030.

    Article  PubMed  CAS  Google Scholar 

  156. Hachehouche, L. N., Chetoui, N., & Aoudjit, F. (2010). Implication of discoidin domain receptor 1 in T cell migration in three-dimensional collagen. Molecular Immunology, 47(9), 1866–1869. doi:10.1016/j.molimm.2010.02.023.

    Article  PubMed  CAS  Google Scholar 

  157. Guerrot, D., Kerroch, M., Placier, S., Vandermeersch, S., Trivin, C., Mael-Ainin, M., et al. (2011). Discoidin domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy. The American Journal of Pathology, 179(1), 83–91. doi:10.1016/j.ajpath.2011.03.023.

    Article  PubMed  CAS  Google Scholar 

  158. Park, H. S., Kim, K. R., Lee, H. J., Choi, H. N., Kim, D. K., Kim, B. T., et al. (2007). Overexpression of discoidin domain receptor 1 increases the migration and invasion of hepatocellular carcinoma cells in association with matrix metalloproteinase. Oncology Reports, 18(6), 1435–1441.

    PubMed  CAS  Google Scholar 

  159. Castro-Sanchez, L., Soto-Guzman, A., Navarro-Tito, N., Martinez-Orozco, R., & Salazar, E. P. (2010). Native type IV collagen induces cell migration through a CD9 and DDR1-dependent pathway in MDA-MB-231 breast cancer cells. European Journal of Cell Biology, 89(11), 843–852. doi:10.1016/j.ejcb.2010.07.004.

    Article  PubMed  CAS  Google Scholar 

  160. Rowe, R. G., & Weiss, S. J. (2009). Navigating ECM barriers at the invasive front: The cancer cell–stroma interface. Annual Review of Cell and Developmental Biology, 25, 567–595. doi:10.1146/annurev.cellbio.24.110707.175315.

    Article  PubMed  CAS  Google Scholar 

  161. Castro-Sanchez, L., Soto-Guzman, A., Guaderrama-Diaz, M., Cortes-Reynosa, P., & Salazar, E. P. (2011). Role of DDR1 in the gelatinases secretion induced by native type IV collagen in MDA-MB-231 breast cancer cells. Clinical & Experimental Metastasis, 28(5), 463–477. doi:10.1007/s10585-011-9385-9.

    Article  CAS  Google Scholar 

  162. Gschwind, A., Fischer, O. M., & Ullrich, A. (2004). The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nature Reviews. Cancer, 4(5), 361–370. doi:10.1038/nrc1360.

    Article  PubMed  CAS  Google Scholar 

  163. Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews. Cancer, 9(1), 28–39. doi:10.1038/nrc2559.

    Article  PubMed  CAS  Google Scholar 

  164. Rix, U., Hantschel, O., Durnberger, G., Remsing Rix, L. L., Planyavsky, M., Fernbach, N. V., et al. (2007). Chemical proteomic profiles of the BCR-ABL inhibitors imatinib, nilotinib, and dasatinib reveal novel kinase and nonkinase targets. Blood, 110(12), 4055–4063. doi:10.1182/blood-2007-07-102061.

    Article  PubMed  CAS  Google Scholar 

  165. Bantscheff, M., Eberhard, D., Abraham, Y., Bastuck, S., Boesche, M., Hobson, S., et al. (2007). Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnology, 25(9), 1035–1044. doi:10.1038/nbt1328.

    Article  PubMed  CAS  Google Scholar 

  166. Hantschel, O., Rix, U., & Superti-Furga, G. (2008). Target spectrum of the BCR-ABL inhibitors imatinib, nilotinib and dasatinib. Leukemia & Lymphoma, 49(4), 615–619. doi:10.1080/10428190801896103.

    Article  CAS  Google Scholar 

  167. Day, E., Waters, B., Spiegel, K., Alnadaf, T., Manley, P. W., Buchdunger, E., et al. (2008). Inhibition of collagen-induced discoidin domain receptor 1 and 2 activation by imatinib, nilotinib and dasatinib. European Journal of Pharmacology, 599(1–3), 44–53. doi:10.1016/j.ejphar.2008.10.014.

    Article  PubMed  CAS  Google Scholar 

  168. Li, J., Rix, U., Fang, B., Bai, Y., Edwards, A., Colinge, J., et al. (2010). A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nature Chemical Biology, 6(4), 291–299. doi:10.1038/nchembio.332.

    Article  PubMed  CAS  Google Scholar 

  169. Rix, U., Remsing Rix, L. L., Terker, A. S., Fernbach, N. V., Hantschel, O., Planyavsky, M., et al. (2010). A comprehensive target selectivity survey of the BCR-ABL kinase inhibitor INNO-406 by kinase profiling and chemical proteomics in chronic myeloid leukemia cells. Leukemia, U.K, 24(1), 44–50. doi:10.1038/leu.2009.228.

    Article  CAS  Google Scholar 

  170. Sun, X., Phan, T. N., Jung, S. H., Kim, S. Y., Cho, J. U., Lee, H., et al. (2011). LCB 03-0110, a novel pan-DDR/c-Src family tyrosine kinase inhibitor, suppresses scar formation by inhibiting fibroblast and macrophage activation. The Journal of Pharmacology and Experimental Therapeutics. doi:10.1124/jpet.111.187328.

  171. Yang, X., Huang, Y., Crowson, M., Li, J., Maitland, M. L., & Lussier, Y. A. (2010). Kinase inhibition-related adverse events predicted from in vitro kinome and clinical trial data. Journal of Biomedical Informatics, 43(3), 376–384. doi:10.1016/j.jbi.2010.04.006.

    Article  PubMed  CAS  Google Scholar 

  172. Du, J., Bernasconi, P., Clauser, K. R., Mani, D. R., Finn, S. P., Beroukhim, R., et al. (2009). Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nature Biotechnology, 27(1), 77–83. doi:10.1038/nbt.1513.

    Article  PubMed  CAS  Google Scholar 

  173. Mihai, C., Iscru, D. F., Druhan, L. J., Elton, T. S., & Agarwal, G. (2006). Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1. Journal of Molecular Biology, 361(5), 864–876.

    Article  PubMed  CAS  Google Scholar 

  174. Siddiqui, K., Kim, G. W., Lee, D. H., Shin, H. R., Yang, E. G., Lee, N. T., et al. (2009). Actinomycin D identified as an inhibitor of discoidin domain receptor 2 interaction with collagen through an insect cell based screening of a drug compound library. Biological & Pharmaceutical Bulletin, 32(1), 136–141.

    Article  CAS  Google Scholar 

  175. Turashvili, G., Bouchal, J., Ehrmann, J., Fridman, E., Skarda, J., & Kolar, Z. (2007). Novel immunohistochemical markers for the differentiation of lobular and ductal invasive breast carcinomas. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 151(1), 59–64.

    PubMed  CAS  Google Scholar 

  176. Tun, H. W., Personett, D., Baskerville, K. A., Menke, D. M., Jaeckle, K. A., Kreinest, P., et al. (2008). Pathway analysis of primary central nervous system lymphoma. Blood, 111(6), 3200–3210. doi:10.1182/blood-2007-10-119099.

    Article  PubMed  CAS  Google Scholar 

  177. Ahmad, P. J., Trcka, D., Xue, S., Franco, C., Speer, M. Y., Giachelli, C. M., et al. (2009). Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization. The American Journal of Pathology, 175(6), 2686–2696. doi:10.2353/ajpath.2009.080734.

    Article  PubMed  CAS  Google Scholar 

  178. Flamant, M., Placier, S., Rodenas, A., Curat, C. A., Vogel, W. F., Chatziantoniou, C., et al. (2006). Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. Journal of the American Society of Nephrology, 17(12), 3374–3381.

    Article  PubMed  CAS  Google Scholar 

  179. Avivi-Green, C., Singal, M., & Vogel, W. F. (2006). Discoidin domain receptor 1-deficient mice are resistant to bleomycin-induced lung fibrosis. American Journal of Respiratory and Critical Care Medicine, 174(4), 420–427.

    Article  PubMed  CAS  Google Scholar 

  180. Franco, C., Hou, G., Ahmad, P. J., Fu, E. Y., Koh, L., Vogel, W. F., et al. (2008). Discoidin domain receptor 1 (ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor-deficient mice. Circulation Research, 102(10), 1202–1211. doi:10.1161/CIRCRESAHA.107.170662.

    Article  PubMed  CAS  Google Scholar 

  181. Gross, O., Girgert, R., Beirowski, B., Kretzler, M., Kang, H. G., Kruegel, J., et al. (2010). Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix Biology, 29(5), 346–356. doi:10.1016/j.matbio.2010.03.002.

    Article  PubMed  CAS  Google Scholar 

  182. Ferri, N., Carragher, N. O., & Raines, E. W. (2004). Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: Potential implications in atherosclerosis and lymphangioleiomyomatosis. American Journal of Pathology, 164(5), 1575–1585.

    Article  PubMed  CAS  Google Scholar 

  183. Blissett, A. R., Garbellini, D., Calomeni, E. P., Mihai, C., Elton, T. S., & Agarwal, G. (2009). Regulation of collagen fibrillogenesis by cell-surface expression of kinase dead DDR2. Journal of Molecular Biology, 385(3), 902–911. doi:10.1016/j.jmb.2008.10.060.

    Article  PubMed  CAS  Google Scholar 

  184. Xu, L., Peng, H., Wu, D., Hu, K., Goldring, M. B., Olsen, B. R., et al. (2005). Activation of the discoidin domain receptor 2 induces expression of matrix metalloproteinase 13 associated with osteoarthritis in mice. The Journal of Biological Chemistry, 280(1), 548–555.

    Article  PubMed  CAS  Google Scholar 

  185. Xu, L., Peng, H., Glasson, S., Lee, P. L., Hu, K., Ijiri, K., et al. (2007). Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis and Rheumatism, 56(8), 2663–2673.

    Article  PubMed  CAS  Google Scholar 

  186. Wang, J., Lu, H., Liu, X., Deng, Y., Sun, T., Li, F., et al. (2002). Functional analysis of discoidin domain receptor 2 in synovial fibroblasts in rheumatoid arthritis. Journal of Autoimmunity, 19(3), 161–168.

    Article  PubMed  Google Scholar 

  187. Su, J., Yu, J., Ren, T., Zhang, W., Zhang, Y., Liu, X., et al. (2009). Discoidin domain receptor 2 is associated with the increased expression of matrix metalloproteinase-13 in synovial fibroblasts of rheumatoid arthritis. Molecular and Cellular Biochemistry, 330(1–2), 141–152. doi:10.1007/s11010-009-0127-0.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the NIH/NCI grant R01 CA-61986; Department of Defense grant PC100274 (to RF), NIH/NCI grants R01 CA-125577, and CA-107469 (to CGK); Medical Research Council UK grant G0701121; and Biotechnology and Biological Sciences Research Council UK grant BB/IO11226/1 (to BL) and a postdoctoral fellowship from the Karmanos Cancer Institute and Wayne State University, Office of the Vice President for Research (to RRV). We thank Dr. Anjum Sohail and Mr. Richard Arkwright for their helpful comments. This review is dedicated to the memory of Dr. Wolfgang Vogel, who pioneered the DDR field.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Fridman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiathan, R.R., Marco, M., Leitinger, B. et al. Discoidin domain receptor tyrosine kinases: new players in cancer progression. Cancer Metastasis Rev 31, 295–321 (2012). https://doi.org/10.1007/s10555-012-9346-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-012-9346-z

Keywords

Navigation