Skip to main content

Advertisement

Log in

DNA methylation markers in colorectal cancer

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) arises as a consequence of the accumulation of genetic and epigenetic alterations in colonic epithelial cells during neoplastic transformation. Epigenetic modifications, particularly DNA methylation in selected gene promoters, are recognized as common molecular alterations in human tumors. Substantial efforts have been made to determine the cause and role of aberrant DNA methylation (“epigenomic instability”) in colon carcinogenesis. In the colon, aberrant DNA methylation arises in tumor-adjacent, normal-appearing mucosa. Aberrant methylation also contributes to later stages of colon carcinogenesis through simultaneous methylation in key specific genes that alter specific oncogenic pathways. Hypermethylation of several gene clusters has been termed CpG island methylator phenotype and appears to define a subgroup of colon cancer distinctly characterized by pathological, clinical, and molecular features. DNA methylation of multiple promoters may serve as a biomarker for early detection in stool and blood DNA and as a tool for monitoring patients with CRC. DNA methylation patterns may also be predictors of metastatic or aggressive CRC. Therefore, the aim of this review is to understand DNA methylation as a driving force in colorectal neoplasia and its emerging value as a molecular marker in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CRC:

colorectal cancer

ESCC:

esophageal squamous cell carcinoma

EAD:

esophageal adenocarcinoma

HNSCC:

head and neck squamous cell carcinoma

CEA:

carcinoembryonic antigen

AFP:

alpha-fetoprotein

CIMP:

CpG island methylator phenotype

CIMP-H:

CIMP-high

CIMP-L:

CIMP-low

CIMP−:

CIMP-negative

CIMP+:

CIMP-positive

MSI:

microsatellite instability

MSS:

microsatellite stable

M-CRN:

multiple colorectal neoplasia

S-CRC:

solitary colorectal cancer

ACF:

aberrant crypt foci

HPP:

hyperplastic polyposis

HP:

hyperplastic polyps

MSP:

methylation-specific PCR

Q-MSP:

quantitative MSP

5-FU:

5-fluorouracil

References

  1. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., et al. (2005). Cancer statistics, 2005. CA: A Cancer Journal for Clinicians, 55(1), 10–30.

    Google Scholar 

  2. Parkin, D. M., Pisani, P., & Ferlay, J. (1999). Global cancer statistics. CA: A Cancer Journal for Clinicians, 49(1), 33–64.

    CAS  Google Scholar 

  3. Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87(2), 159–170.

    PubMed  CAS  Google Scholar 

  4. Smith, G., Carey, F. A., Beattie, J., Wilkie, M. J., Lightfoot, T. J., Coxhead, J., et al. (2002). Mutations in APC, Kirsten-ras, and p53—Alternative genetic pathways to colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 99(14), 9433–9438.

    PubMed  CAS  Google Scholar 

  5. Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3(6), 415–428.

    PubMed  CAS  Google Scholar 

  6. Rennie, P. S., & Nelson, C. C. (1998). Epigenetic mechanisms for progression of prostate cancer. Cancer and Metastasis Reviews, 17(4), 401–409.

    PubMed  CAS  Google Scholar 

  7. Turker, M. S., & Bestor, T. H. (1997). Formation of methylation patterns in the mammalian genome. Mutation Research, 386(2), 119–130.

    PubMed  CAS  Google Scholar 

  8. Jost, J. P., & Bruhat, A. (1997). The formation of DNA methylation patterns and the silencing of genes. Progress in Nucleic Acid Research and Molecular Biology, 57, 217–248.

    PubMed  CAS  Google Scholar 

  9. Bock, C., Walter, J., Paulsen, M., & Lengauer, T. (2007). CpG island mapping by epigenome prediction. PLoS Computational Biology, 3(6), e110.

    PubMed  Google Scholar 

  10. Jones, P. A., & Takai, D. (2001). The role of DNA methylation in mammalian epigenetics. Science, 293(5532), 1068–1070.

    PubMed  CAS  Google Scholar 

  11. Schulz, W. A. (1998). DNA methylation in urological malignancies. International Journal of Oncology, 13(1), 151–167 (review).

    PubMed  CAS  Google Scholar 

  12. Reik, W., & Surani, M. A. (1989). Cancer genetics. Genomic imprinting and embryonal tumours. Nature, 338(6211), 112–113.

    PubMed  CAS  Google Scholar 

  13. Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., & Feinberg, A. P. (1993). Relaxation of imprinted genes in human cancer. Nature, 362(6422), 747–749.

    PubMed  CAS  Google Scholar 

  14. Bedford, M. T., & van Helden, P. D. (1987). Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Research, 47(20), 5274–5276.

    PubMed  CAS  Google Scholar 

  15. Sakai, T., Toguchida, J., Ohtani, N., Yandell, D. W., Rapaport, J. M., & Dryja, T. P. (1991). Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene. American Journal of Human Genetics, 48(5), 880–888.

    PubMed  CAS  Google Scholar 

  16. Herman, J. G., Latif, F., Weng, Y., Lerman, M. I., Zbar, B., Liu, S., et al. (1994). Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 91(21), 9700–9704.

    PubMed  CAS  Google Scholar 

  17. Graff, J. R., Herman, J. G., Lapidus, R. G., Chopra, H., Xu, R., Jarrard, D. F., et al. (1995). E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Research, 55(22), 5195–5199.

    PubMed  CAS  Google Scholar 

  18. Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M., & Issa, J. P. (1998). Alterations in DNA methylation: A fundamental aspect of neoplasia. Advances in Cancer Research, 72, 141–196.

    PubMed  CAS  Google Scholar 

  19. Bird, A. (1992). The essentials of DNA methylation. Cell, 70(1), 5–8.

    PubMed  CAS  Google Scholar 

  20. Merlo, A., Herman, J. G., Mao, L., Lee, D. J., Gabrielson, E., Burger, P. C., et al. (1995). 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Medicine, 1(7), 686–692.

    PubMed  CAS  Google Scholar 

  21. Herman, J. G., Umar, A., Polyak, K., Graff, J. R., Ahuja, N., Issa, J. P., et al. (1998). Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 6870–6875.

    PubMed  CAS  Google Scholar 

  22. Sidransky, D. (2002). Emerging molecular markers of cancer. Nature Reviews Cancer, 2(3), 210–219.

    PubMed  CAS  Google Scholar 

  23. (1998). 1997 update of recommendations for the use of tumor markers in breast and colorectal cancer. Adopted on November 7, 1997 by the American Society of Clinical Oncology. Journal of Clinical Oncology, 16(2), 793–795.

  24. Rashid, A., Shen, L., Morris, J. S., Issa, J. P., & Hamilton, S. R. (2001). CpG island methylation in colorectal adenomas. American Journal of Pathology, 159(3), 1129–1135.

    PubMed  CAS  Google Scholar 

  25. Kane, M. F., Loda, M., Gaida, G. M., Lipman, J., Mishra, R., Goldman, H., et al. (1997). Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Research, 57(5), 808–811.

    PubMed  CAS  Google Scholar 

  26. Veigl, M. L., Kasturi, L., Olechnowicz, J., Ma, A. H., Lutterbaugh, J. D., Periyasamy, S., et al. (1998). Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 8698–8702.

    PubMed  CAS  Google Scholar 

  27. Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., & Issa, J. P. (1999). CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 96(15), 8681–8686.

    PubMed  CAS  Google Scholar 

  28. Baylin, S. B., & Herman, J. G. (2000). DNA hypermethylation in tumorigenesis: Epigenetics joins genetics. Trends in Genetics, 16(4), 168–174.

    PubMed  CAS  Google Scholar 

  29. Herman, J. G., Merlo, A., Mao, L., Lapidus, R. G., Issa, J. P., Davidson, N. E., et al. (1995). Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Research, 55(20), 4525–4530.

    PubMed  CAS  Google Scholar 

  30. Mehlen, P., Rabizadeh, S., Snipas, S. J., Assa-Munt, N., Salvesen, G. S., & Bredesen, D. E. (1998). The DCC gene product induces apoptosis by a mechanism requiring receptor proteolysis. Nature, 395(6704), 801–804.

    PubMed  CAS  Google Scholar 

  31. Bernet, A., Mazelin, L., Coissieux, M. M., Gadot, N., Ackerman, S. L., Scoazec, J. Y., et al. (2007). Inactivation of the UNC5C Netrin-1 receptor is associated with tumor progression in colorectal malignancies. Gastroenterology, 133(6), 1840–1848.

    PubMed  CAS  Google Scholar 

  32. Shin, S. K., Nagasaka, T., Jung, B. H., Matsubara, N., Kim, W. H., Carethers, J. M., et al. (2007). Epigenetic and genetic alterations in Netrin-1 receptors UNC5C and DCC in human colon cancer. Gastroenterology, 133(6), 1849–1857.

    PubMed  CAS  Google Scholar 

  33. Hibi, K., Mizukami, H., Shirahata, A., Goto, T., Sakata, M., & Sanada, Y. (2009). Aberrant methylation of the netrin-1 receptor genes UNC5C and DCC detected in advanced colorectal cancer. World Journal of Surgery, 33(5), 1053–1057.

    PubMed  Google Scholar 

  34. Hibi, K., Mizukami, H., Shirahata, A., Goto, T., Sakata, M., Saito, M., et al. (2009). Aberrant methylation of the UNC5C gene is frequently detected in advanced colorectal cancer. Anticancer Research, 29(1), 271–273.

    PubMed  CAS  Google Scholar 

  35. Levin, B. (2006). Molecular screening testing for colorectal cancer. Clinical Cancer Research, 12(17), 5014–5017.

    PubMed  CAS  Google Scholar 

  36. Kang, G. H., Lee, S., Lee, H. J., & Hwang, K. S. (2004). Aberrant CpG island hypermethylation of multiple genes in prostate cancer and prostatic intraepithelial neoplasia. Journal of Pathology, 202(2), 233–240.

    PubMed  CAS  Google Scholar 

  37. Herman, J. G., & Baylin, S. B. (2003). Gene silencing in cancer in association with promoter hypermethylation. New England Journal of Medicine, 349(21), 2042–2054.

    PubMed  CAS  Google Scholar 

  38. Plaut, A. G., Qiu, J., Grundy, F., & Wright, A. (1992). Growth of Haemophilus influenzae in human milk: synthesis, distribution, and activity of IgA protease as determined by study of iga+ and mutant iga− cells. Journal of Infectious Diseases, 166(1), 43–52.

    PubMed  CAS  Google Scholar 

  39. Muller, H. M., Oberwalder, M., Fiegl, H., Morandell, M., Goebel, G., Zitt, M., et al. (2004). Methylation changes in faecal DNA: A marker for colorectal cancer screening? Lancet, 363(9417), 1283–1285.

    PubMed  Google Scholar 

  40. Sanchez-Cespedes, M., Esteller, M., Wu, L., Nawroz-Danish, H., Yoo, G. H., Koch, W. M., et al. (2000). Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Research, 60(4), 892–895.

    PubMed  CAS  Google Scholar 

  41. Hellebrekers, D. M., Lentjes, M. H., van den Bosch, S. M., Melotte, V., Wouters, K. A., Daenen, K. L., et al. (2009). GATA4 and GATA5 are potential tumor suppressors and biomarkers in colorectal cancer. Clinical Cancer Research, 15(12), 3990–3997.

    PubMed  CAS  Google Scholar 

  42. Kim, M. S., Louwagie, J., Carvalho, B., Terhaar Sive Droste, J. S., Park, H. L., Chae, Y. K., et al. (2009). Promoter DNA methylation of oncostatin m receptor-beta as a novel diagnostic and therapeutic marker in colon cancer. PLoS ONE, 4(8), e6555.

    PubMed  Google Scholar 

  43. Chen, W. D., Han, Z. J., Skoletsky, J., Olson, J., Sah, J., Myeroff, L., et al. (2005). Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. Journal of the National Cancer Institute, 97(15), 1124–1132.

    PubMed  CAS  Google Scholar 

  44. Shirahata, A., Sakata, M., Sakuraba, K., Goto, T., Mizukami, H., Saito, M., et al. (2009). Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Research, 29(1), 279–281.

    PubMed  CAS  Google Scholar 

  45. Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M. P., et al. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genetics, 31(2), 141–149.

    PubMed  CAS  Google Scholar 

  46. Chumakov, P. I., Tatarkin, A. P., & Putilin, V. A. (1990). Gigantic pheochromocytoma of the left adrenal gland. Vestnik Khirurgii Imeni I. I. Grekova, 145(12), 38.

    PubMed  CAS  Google Scholar 

  47. Xu, X. L., Yu, J., Zhang, H. Y., Sun, M. H., Gu, J., Du, X., et al. (2004). Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World Journal of Gastroenterology, 10(23), 3441–3454.

    PubMed  CAS  Google Scholar 

  48. Jass, J. R. (2007). Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology, 50(1), 113–130.

    PubMed  CAS  Google Scholar 

  49. Petko, Z., Ghiassi, M., Shuber, A., Gorham, J., Smalley, W., Washington, M. K., et al. (2005). Aberrantly methylated CDKN2A, MGMT, and MLH1 in colon polyps and in fecal DNA from patients with colorectal polyps. Clinical Cancer Research, 11(3), 1203–1209.

    PubMed  CAS  Google Scholar 

  50. Ahuja, N., Li, Q., Mohan, A. L., Baylin, S. B., & Issa, J. P. (1998). Aging and DNA methylation in colorectal mucosa and cancer. Cancer Research, 58(23), 5489–5494.

    PubMed  CAS  Google Scholar 

  51. Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Research, 60(21), 5954–5958.

    PubMed  CAS  Google Scholar 

  52. Rex, D. K., Cutler, C. S., Lemmel, G. T., Rahmani, E. Y., Clark, D. W., Helper, D. J., et al. (1997). Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology, 112(1), 24–28.

    PubMed  CAS  Google Scholar 

  53. Hixson, L. J., Fennerty, M. B., Sampliner, R. E., McGee, D., & Garewal, H. (1990). Prospective study of the frequency and size distribution of polyps missed by colonoscopy. Journal of the National Cancer Institute, 82(22), 1769–1772.

    PubMed  CAS  Google Scholar 

  54. Wong, I. H. (2001). Methylation profiling of human cancers in blood: Molecular monitoring and prognostication. International Journal of Oncology, 19(6), 1319–1324 (review).

    PubMed  CAS  Google Scholar 

  55. Johnson, P. J., & Lo, Y. M. (2002). Plasma nucleic acids in the diagnosis and management of malignant disease. Clinical Chemistry, 48(8), 1186–1193.

    PubMed  CAS  Google Scholar 

  56. Benson, A. B., 3rd, Choti, M. A., Cohen, A. M., Doroshow, J. H., Fuchs, C., Kiel, K., et al. (2000). NCCN practice guidelines for colorectal cancer. Oncology (Williston Park), 14(11A), 203–212.

    Google Scholar 

  57. Compton, C., Fenoglio-Preiser, C. M., Pettigrew, N., & Fielding, L. P. (2000). American joint committee on cancer prognostic factors consensus conference: Colorectal Working Group. Cancer, 88(7), 1739–1757.

    PubMed  CAS  Google Scholar 

  58. Duffy, M. J. (2001). Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clinical Chemistry, 47(4), 624–630.

    PubMed  CAS  Google Scholar 

  59. Muller, H. M., & Widschwendter, M. (2003). Methylated DNA as a possible screening marker for neoplastic disease in several body fluids. Expert Review of Molecular Diagnostics, 3(4), 443–458.

    PubMed  CAS  Google Scholar 

  60. Lofton-Day, C., Model, F., Devos, T., Tetzner, R., Distler, J., Schuster, M., et al. (2008). DNA methylation biomarkers for blood-based colorectal cancer screening. Clinical Chemistry, 54(2), 414–423.

    PubMed  CAS  Google Scholar 

  61. Leung, W. K., To, K. F., Man, E. P., Chan, M. W., Bai, A. H., Hui, A. J., et al. (2005). Quantitative detection of promoter hypermethylation in multiple genes in the serum of patients with colorectal cancer. American Journal of Gastroenterology, 100(10), 2274–2279.

    PubMed  CAS  Google Scholar 

  62. Wallner, M., Herbst, A., Behrens, A., Crispin, A., Stieber, P., Goke, B., et al. (2006). Methylation of serum DNA is an independent prognostic marker in colorectal cancer. Clinical Cancer Research, 12(24), 7347–7352.

    PubMed  CAS  Google Scholar 

  63. Herbst, A., Wallner, M., Rahmig, K., Stieber, P., Crispin, A., Lamerz, R., et al. (2009). Methylation of helicase-like transcription factor in serum of patients with colorectal cancer is an independent predictor of disease recurrence. European Journal of Gastroenterology and Hepatology, 21(5), 565–569.

    PubMed  CAS  Google Scholar 

  64. Etzioni, R., Urban, N., Ramsey, S., McIntosh, M., Schwartz, S., Reid, B., et al. (2003). The case for early detection. Nature Reviews Cancer, 3(4), 243–252.

    PubMed  CAS  Google Scholar 

  65. Landis, S. H., Murray, T., Bolden, S., & Wingo, P. A. (1998). Cancer statistics, 1998. CA: A Cancer Journal for Clinicians, 48(1), 6–29.

    CAS  Google Scholar 

  66. Sanchez-Cespedes, M., Esteller, M., Hibi, K., Cope, F. O., Westra, W. H., Piantadosi, S., et al. (1999). Molecular detection of neoplastic cells in lymph nodes of metastatic colorectal cancer patients predicts recurrence. Clinical Cancer Research, 5(9), 2450–2454.

    PubMed  CAS  Google Scholar 

  67. Zhu, J. M., & Jin, Z. D. (1991). Neoplasms caused by implants in orthopedics. Zhonghua Wai Ke Za Zhi, 29(7), 457–460.

    PubMed  CAS  Google Scholar 

  68. Goto, T., Mizukami, H., Shirahata, A., Sakata, M., Saito, M., Ishibashi, K., et al. (2009). Aberrant methylation of the p16 gene is frequently detected in advanced colorectal cancer. Anticancer Research, 29(1), 275–277.

    PubMed  CAS  Google Scholar 

  69. Chen, J., Rocken, C., Lofton-Day, C., Schulz, H. U., Muller, O., Kutzner, N., et al. (2005). Molecular analysis of APC promoter methylation and protein expression in colorectal cancer metastasis. Carcinogenesis, 26(1), 37–43.

    PubMed  Google Scholar 

  70. Issa, J. P., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., & Baylin, S. B. (1994). Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genetics, 7(4), 536–540.

    PubMed  CAS  Google Scholar 

  71. Issa, J. P., Zehnbauer, B. A., Civin, C. I., Collector, M. I., Sharkis, S. J., Davidson, N. E., et al. (1996). The estrogen receptor CpG island is methylated in most hematopoietic neoplasms. Cancer Research, 56(5), 973–977.

    PubMed  CAS  Google Scholar 

  72. Hibi, K., Sakata, M., Sakuraba, K., Shirahata, A., Goto, T., Mizukami, H., et al. (2008). Aberrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer. Anticancer Research, 28(3A), 1581–1584.

    PubMed  CAS  Google Scholar 

  73. Harder, J., Engelstaedter, V., Usadel, H., Lassmann, S., Werner, M., Baier, P., et al. (2009). CpG-island methylation of the ER promoter in colorectal cancer: analysis of micrometastases in lymph nodes from UICC stage I and II patients. British Journal of Cancer, 100(2), 360–365.

    PubMed  CAS  Google Scholar 

  74. Umetani, N., Takeuchi, H., Fujimoto, A., Shinozaki, M., Bilchik, A. J., & Hoon, D. S. (2004). Epigenetic inactivation of ID4 in colorectal carcinomas correlates with poor differentiation and unfavorable prognosis. Clinical Cancer Research, 10(22), 7475–7483.

    PubMed  CAS  Google Scholar 

  75. Ebert, M. P., Mooney, S. H., Tonnes-Priddy, L., Lograsso, J., Hoffmann, J., Chen, J., et al. (2005). Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia, 7(8), 771–778.

    PubMed  CAS  Google Scholar 

  76. Yang, D., Thangaraju, M., Greeneltch, K., Browning, D. D., Schoenlein, P. V., Tamura, T., et al. (2007). Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells. Cancer Research, 67(7), 3301–3309.

    PubMed  CAS  Google Scholar 

  77. De Ganck, A., De Corte, V., Bruyneel, E., Bracke, M., Vandekerckhove, J., & Gettemans, J. (2009). Down-regulation of myopodin expression reduces invasion and motility of PC-3 prostate cancer cells. International Journal of Oncology, 34(5), 1403–1409.

    PubMed  Google Scholar 

  78. Patra, S. K. (2008). Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochimica et Biophysica Acta, 1785(2), 182–206.

    PubMed  CAS  Google Scholar 

  79. Patra, S. K., & Bettuzzi, S. (2007). Epigenetic DNA-methylation regulation of genes coding for lipid raft-associated components: A role for raft proteins in cell transformation and cancer progression. Oncology Reports, 17(6), 1279–1290 (review).

    PubMed  CAS  Google Scholar 

  80. Surani, M. A. (2001). Reprogramming of genome function through epigenetic inheritance. Nature, 414(6859), 122–128.

    PubMed  CAS  Google Scholar 

  81. Wiechen, K., Diatchenko, L., Agoulnik, A., Scharff, K. M., Schober, H., Arlt, K., et al. (2001). Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. American Journal of Pathology, 159(5), 1635–1643.

    PubMed  CAS  Google Scholar 

  82. Cui, J., Rohr, L. R., Swanson, G., Speights, V. O., Maxwell, T., & Brothman, A. R. (2001). Hypermethylation of the caveolin-1 gene promoter in prostate cancer. Prostate, 46(3), 249–256.

    PubMed  CAS  Google Scholar 

  83. Patra, S. K., Patra, A., Zhao, H., & Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Molecular Carcinogenesis, 33(3), 163–171.

    PubMed  CAS  Google Scholar 

  84. Karube, H., Masuda, H., Ishii, Y., & Takayama, T. (2002). E-cadherin expression is inversely proportional to tumor size in experimental liver metastases. Journal of Surgical Research, 106(1), 173–178.

    PubMed  CAS  Google Scholar 

  85. Ribeiro-Filho, L. A., Franks, J., Sasaki, M., Shiina, H., Li, L. C., Nojima, D., et al. (2002). CpG hypermethylation of promoter region and inactivation of E-cadherin gene in human bladder cancer. Molecular Carcinogenesis, 34(4), 187–198.

    PubMed  CAS  Google Scholar 

  86. Ikeguchi, M., Makino, M., & Kaibara, N. (2001). Clinical significance of E-cadherin-catenin complex expression in metastatic foci of colorectal carcinoma. Journal of Surgical Oncology, 77(3), 201–207.

    PubMed  CAS  Google Scholar 

  87. Liu, Z. R., Qin, R. Y., Wu, G. S., Chang, Q., Wang, D. Y., Zou, S. Q., et al. (2004). Effect of octreotide on human pancreatic cancer cells after transfected with somatostatin receptor type 2 gene. World Journal of Gastroenterology, 10(15), 2292–2294.

    PubMed  CAS  Google Scholar 

  88. Birtalan, G. (1991). The importance of Paracelsus (1493–1541) in the history of medicine. Orvosi Hetilap, 132(30), 1657–1660.

    PubMed  CAS  Google Scholar 

  89. Weber, G. F., Bronson, R. T., Ilagan, J., Cantor, H., Schmits, R., & Mak, T. W. (2002). Absence of the CD44 gene prevents sarcoma metastasis. Cancer Research, 62(8), 2281–2286.

    PubMed  CAS  Google Scholar 

  90. Verkaik, N. S., Trapman, J., Romijn, J. C., Van der Kwast, T. H., & Van Steenbrugge, G. J. (1999). Down-regulation of CD44 expression in human prostatic carcinoma cell lines is correlated with DNA hypermethylation. International Journal of Cancer, 80(3), 439–443.

    CAS  Google Scholar 

  91. Hibi, K., Kodera, Y., Ito, K., Akiyama, S., Shirane, M., & Nakao, A. (2004). Plasminogen activator inhibitor-1 is a downstream mediator of the PGP9.5-related oncogenic pathway in esophageal squamous cell carcinoma. Anticancer Research, 24(6), 3731–3734.

    PubMed  CAS  Google Scholar 

  92. Sasaki, H., Yukiue, H., Moriyama, S., Kobayashi, Y., Nakashima, Y., Kaji, M., et al. (2001). Expression of the protein gene product 9.5, PGP9.5, is correlated with T-status in non-small cell lung cancer. Japanese Journal of Clinical Oncology, 31(11), 532–535.

    PubMed  CAS  Google Scholar 

  93. Hibi, K., Westra, W. H., Borges, M., Goodman, S., Sidransky, D., & Jen, J. (1999). PGP9.5 as a candidate tumor marker for non-small-cell lung cancer. American Journal of Pathology, 155(3), 711–715.

    PubMed  CAS  Google Scholar 

  94. Huang, L. J., Chen, S. X., Luo, W. J., Jiang, H. H., Zhang, P. F., & Yi, H. (2006). Proteomic analysis of secreted proteins of non-small cell lung cancer. Ai Zheng, 25(11), 1361–1367.

    PubMed  CAS  Google Scholar 

  95. Tokumaru, Y., Yamashita, K., Kim, M. S., Park, H. L., Osada, M., Mori, M., et al. (2008). The role of PGP9.5 as a tumor suppressor gene in human cancer. International Journal of Cancer, 123(4), 753–759.

    CAS  Google Scholar 

  96. Yu, J., Tao, Q., Cheung, K. F., Jin, H., Poon, F. F., Wang, X., et al. (2008). Epigenetic identification of ubiquitin carboxyl-terminal hydrolase L1 as a functional tumor suppressor and biomarker for hepatocellular carcinoma and other digestive tumors. Hepatology, 48(2), 508–518.

    PubMed  CAS  Google Scholar 

  97. Mandelker, D. L., Yamashita, K., Tokumaru, Y., Mimori, K., Howard, D. L., Tanaka, Y., et al. (2005). PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma. Cancer Research, 65(11), 4963–4968.

    PubMed  CAS  Google Scholar 

  98. Yamashita, K., Park, H. L., Kim, M. S., Osada, M., Tokumaru, Y., Inoue, H., et al. (2006). PGP9.5 methylation in diffuse-type gastric cancer. Cancer Research, 66(7), 3921–3927.

    PubMed  CAS  Google Scholar 

  99. Mizukami, H., Shirahata, A., Goto, T., Sakata, M., Saito, M., Ishibashi, K., et al. (2008). PGP9.5 methylation as a marker for metastatic colorectal cancer. Anticancer Research, 28(5A), 2697–2700.

    PubMed  CAS  Google Scholar 

  100. Grady, W. M. (2005). Epigenetic events in the colorectum and in colon cancer. Biochemical Society Transactions, 33(Pt 4), 684–688.

    PubMed  CAS  Google Scholar 

  101. Luo, L., Chen, W. D., & Pretlow, T. P. (2005). CpG island methylation in aberrant crypt foci and cancers from the same patients. International Journal of Cancer, 115(5), 747–751.

    CAS  Google Scholar 

  102. Chan, A. O., Broaddus, R. R., Houlihan, P. S., Issa, J. P., Hamilton, S. R., & Rashid, A. (2002). CpG island methylation in aberrant crypt foci of the colorectum. American Journal of Pathology, 160(5), 1823–1830.

    PubMed  CAS  Google Scholar 

  103. Wynter, C. V., Walsh, M. D., Higuchi, T., Leggett, B. A., Young, J., & Jass, J. R. (2004). Methylation patterns define two types of hyperplastic polyp associated with colorectal cancer. Gut, 53(4), 573–580.

    PubMed  CAS  Google Scholar 

  104. Goldstein, N. S., Bhanot, P., Odish, E., & Hunter, S. (2003). Hyperplastic-like colon polyps that preceded microsatellite-unstable adenocarcinomas. American Journal of Clinical Pathology, 119(6), 778–796.

    PubMed  Google Scholar 

  105. Jass, J. R., Whitehall, V. L., Young, J., & Leggett, B. A. (2002). Emerging concepts in colorectal neoplasia. Gastroenterology, 123(3), 862–876.

    PubMed  CAS  Google Scholar 

  106. Minoo, P., Baker, K., Goswami, R., Chong, G., Foulkes, W. D., Ruszkiewicz, A. R., et al. (2006). Extensive DNA methylation in normal colorectal mucosa in hyperplastic polyposis. Gut, 55(10), 1467–1474.

    PubMed  CAS  Google Scholar 

  107. Chan, A. O., Issa, J. P., Morris, J. S., Hamilton, S. R., & Rashid, A. (2002). Concordant CpG island methylation in hyperplastic polyposis. American Journal of Pathology, 160(2), 529–536.

    PubMed  CAS  Google Scholar 

  108. Kim, Y. H., Petko, Z., Dzieciatkowski, S., Lin, L., Ghiassi, M., Stain, S., et al. (2006). CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer. Genes, Chromosomes and Cancer, 45(8), 781–789.

    CAS  Google Scholar 

  109. Whitehall, V. L., Walsh, M. D., Young, J., Leggett, B. A., & Jass, J. R. (2001). Methylation of O-6-methylguanine DNA methyltransferase characterizes a subset of colorectal cancer with low-level DNA microsatellite instability. Cancer Research, 61(3), 827–830.

    PubMed  CAS  Google Scholar 

  110. Lee, S., Hwang, K. S., Lee, H. J., Kim, J. S., & Kang, G. H. (2004). Aberrant CpG island hypermethylation of multiple genes in colorectal neoplasia. Laboratory Investigation, 84(7), 884–893.

    PubMed  CAS  Google Scholar 

  111. Ausch, C., Kim, Y. H., Tsuchiya, K. D., Dzieciatkowski, S., Washington, M. K., Paraskeva, C., et al. (2009). Comparative analysis of PCR-based biomarker assay methods for colorectal polyp detection from fecal DNA. Clinical Chemistry, 55(8), 1559–1563.

    PubMed  CAS  Google Scholar 

  112. Itzkowitz, S. H., Jandorf, L., Brand, R., Rabeneck, L., Schroy, P. C., 3rd, Sontag, S., et al. (2007). Improved fecal DNA test for colorectal cancer screening. Clinical Gastroenterology and Hepatology, 5(1), 111–117.

    PubMed  CAS  Google Scholar 

  113. Itzkowitz, S., Brand, R., Jandorf, L., Durkee, K., Millholland, J., Rabeneck, L., et al. (2008). A simplified, noninvasive stool DNA test for colorectal cancer detection. American Journal of Gastroenterology, 103(11), 2862–2870.

    PubMed  Google Scholar 

  114. Huang, C. S., Lal, S. K., & Farraye, F. A. (2005). Colorectal cancer screening in average risk individuals. Cancer Causes and Control, 16(2), 171–188.

    PubMed  Google Scholar 

  115. Hardcastle, J. D., Chamberlain, J. O., Robinson, M. H., Moss, S. M., Amar, S. S., Balfour, T. W., et al. (1996). Randomised controlled trial of faecal-occult-blood screening for colorectal cancer. Lancet, 348(9040), 1472–1477.

    PubMed  CAS  Google Scholar 

  116. Rex, D. K. (2004). American College of Gastroenterology action plan for colorectal cancer prevention. American Journal of Gastroenterology, 99(4), 574–577.

    PubMed  Google Scholar 

  117. Thiis-Evensen, E., Hoff, G. S., Sauar, J., Langmark, F., Majak, B. M., & Vatn, M. H. (1999). Population-based surveillance by colonoscopy: Effect on the incidence of colorectal cancer. Telemark Polyp Study I. Scandinavian Journal of Gastroenterology, 34(4), 414–420.

    PubMed  CAS  Google Scholar 

  118. Issa, J. P. (2004). CpG island methylator phenotype in cancer. Nature Reviews Cancer, 4(12), 988–993.

    PubMed  CAS  Google Scholar 

  119. Tischoff, I., & Tannapfel, A. (2008). Epigenetic alterations in colorectal carcinomas and precancerous lesions. Zeitschrift für Gastroenterologie, 46(10), 1202–1206.

    PubMed  CAS  Google Scholar 

  120. Toyota, M., Ohe-Toyota, M., Ahuja, N., & Issa, J. P. (2000). Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proceedings of the National Academy of Sciences of the United States of America, 97(2), 710–715.

    PubMed  CAS  Google Scholar 

  121. Issa, J. P. (2003). Methylation and prognosis: of molecular clocks and hypermethylator phenotypes. Clinical Cancer Research, 9(8), 2879–2881.

    PubMed  CAS  Google Scholar 

  122. Van Rijnsoever, M., Elsaleh, H., Joseph, D., McCaul, K., & Iacopetta, B. (2003). CpG island methylator phenotype is an independent predictor of survival benefit from 5-fluorouracil in stage III colorectal cancer. Clinical Cancer Research, 9(8), 2898–2903.

    PubMed  Google Scholar 

  123. Shen, L., Catalano, P. J., Benson, A. B., 3rd, O'Dwyer, P., Hamilton, S., Issa, R., et al. (2007). Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clinical Cancer Research, 13(20), 6093–6098.

    PubMed  CAS  Google Scholar 

  124. Iino, H., Jass, J. R., Simms, L. A., Young, J., Leggett, B., Ajioka, Y., et al. (1999). DNA microsatellite instability in hyperplastic polyps, serrated adenomas, and mixed polyps: A mild mutator pathway for colorectal cancer? Journal of Clinical Pathology, 52(1), 5–9.

    PubMed  CAS  Google Scholar 

  125. Chirieac, L. R., Shen, L., Catalano, P. J., Issa, J. P., & Hamilton, S. R. (2005). Phenotype of microsatellite-stable colorectal carcinomas with CpG island methylation. American Journal of Surgical Pathology, 29(4), 429–436.

    PubMed  Google Scholar 

  126. Samowitz, W. S., Sweeney, C., Herrick, J., Albertsen, H., Levin, T. R., Murtaugh, M. A., et al. (2005). Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers. Cancer Research, 65(14), 6063–6069.

    PubMed  CAS  Google Scholar 

  127. Hawkins, N., Norrie, M., Cheong, K., Mokany, E., Ku, S. L., Meagher, A., et al. (2002). CpG island methylation in sporadic colorectal cancers and its relationship to microsatellite instability. Gastroenterology, 122(5), 1376–1387.

    PubMed  CAS  Google Scholar 

  128. Hawkins, N. J., Tomlinson, I., Meagher, A., & Ward, R. L. (2001). Microsatellite-stable diploid carcinoma: A biologically distinct and aggressive subset of sporadic colorectal cancer. British Journal of Cancer, 84(2), 232–236.

    PubMed  CAS  Google Scholar 

  129. Goel, A., Arnold, C. N., Niedzwiecki, D., Chang, D. K., Ricciardiello, L., Carethers, J. M., et al. (2003). Characterization of sporadic colon cancer by patterns of genomic instability. Cancer Research, 63(7), 1608–1614.

    PubMed  CAS  Google Scholar 

  130. Issa, J. P. (2008). Colon cancer: It's CIN or CIMP. Clinical Cancer Research, 14(19), 5939–5940.

    PubMed  Google Scholar 

  131. Maeda, K., Kawakami, K., Ishida, Y., Ishiguro, K., Omura, K., & Watanabe, G. (2003). Hypermethylation of the CDKN2A gene in colorectal cancer is associated with shorter survival. Oncology Reports, 10(4), 935–938.

    PubMed  CAS  Google Scholar 

  132. Wiencke, J. K., Zheng, S., Lafuente, A., Lafuente, M. J., Grudzen, C., Wrensch, M. R., et al. (1999). Aberrant methylation of p16INK4a in anatomic and gender-specific subtypes of sporadic colorectal cancer. Cancer Epidemiology, Biomarkers and Prevention, 8(6), 501–506.

    PubMed  CAS  Google Scholar 

  133. Gonzalez-Martin, G., Diaz-Molinas, M. S., Martinez, A. M., & Ortiz, M. (1991). Heparin-induced hyperkalemia: A prospective study. International Journal of Clinical Pharmacology, Therapy and Toxicology, 29(11), 446–450.

    CAS  Google Scholar 

  134. Eads, C. A., Lord, R. V., Wickramasinghe, K., Long, T. I., Kurumboor, S. K., Bernstein, L., et al. (2001). Epigenetic patterns in the progression of esophageal adenocarcinoma. Cancer Research, 61(8), 3410–3418.

    PubMed  CAS  Google Scholar 

  135. Kambara, T., Simms, L. A., Whitehall, V. L., Spring, K. J., Wynter, C. V., Walsh, M. D., et al. (2004). BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum. Gut, 53(8), 1137–1144.

    PubMed  CAS  Google Scholar 

  136. Strathdee, G., Appleton, K., Illand, M., Millan, D. W., Sargent, J., Paul, J., et al. (2001). Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. American Journal of Pathology, 158(3), 1121–1127.

    PubMed  CAS  Google Scholar 

  137. Garcia-Manero, G., Daniel, J., Smith, T. L., Kornblau, S. M., Lee, M. S., Kantarjian, H. M., et al. (2002). DNA methylation of multiple promoter-associated CpG islands in adult acute lymphocytic leukemia. Clinical Cancer Research, 8(7), 2217–2224.

    PubMed  CAS  Google Scholar 

  138. Toyota, M., Ahuja, N., Suzuki, H., Itoh, F., Ohe-Toyota, M., Imai, K., et al. (1999). Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Research, 59(21), 5438–5442.

    PubMed  CAS  Google Scholar 

  139. Kim, H., Kim, Y. H., Kim, S. E., Kim, N. G., & Noh, S. H. (2003). Concerted promoter hypermethylation of hMLH1, p16INK4A, and E-cadherin in gastric carcinomas with microsatellite instability. Journal of Pathology, 200(1), 23–31.

    PubMed  CAS  Google Scholar 

  140. Shen, L., Ahuja, N., Shen, Y., Habib, N. A., Toyota, M., Rashid, A., et al. (2002). DNA methylation and environmental exposures in human hepatocellular carcinoma. Journal of the National Cancer Institute, 94(10), 755–761.

    PubMed  CAS  Google Scholar 

  141. Ueki, T., Toyota, M., Sohn, T., Yeo, C. J., Issa, J. P., Hruban, R. H., et al. (2000). Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Research, 60(7), 1835–1839.

    PubMed  CAS  Google Scholar 

  142. Thiel, E., Hoelzer, D., Dorken, B., Loffler, H., Messerer, C., & Huhn, D. (1987). Clinical relevance of blast cell phenotype as determined with monoclonal antibodies in acute lymphoblastic leukemia of adults. Haematology and Blood Transfusion, 30, 95–103.

    PubMed  CAS  Google Scholar 

  143. Yamashita, K., Dai, T., Dai, Y., Yamamoto, F., & Perucho, M. (2003). Genetics supersedes epigenetics in colon cancer phenotype. Cancer Cell, 4(2), 121–131.

    PubMed  CAS  Google Scholar 

  144. Shen, L., Toyota, M., Kondo, Y., Lin, E., Zhang, L., Guo, Y., et al. (2007). Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18654–18659.

    PubMed  CAS  Google Scholar 

  145. Grady, W. M., & Carethers, J. M. (2008). Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology, 135(4), 1079–1099.

    PubMed  CAS  Google Scholar 

  146. Ogino, S., Kawasaki, T., Kirkner, G. J., Suemoto, Y., Meyerhardt, J. A., & Fuchs, C. S. (2007). Molecular correlates with MGMT promoter methylation and silencing support CpG island methylator phenotype-low (CIMP-low) in colorectal cancer. Gut, 56(11), 1564–1571.

    PubMed  CAS  Google Scholar 

  147. Hsieh, C. J., Klump, B., Holzmann, K., Borchard, F., Gregor, M., & Porschen, R. (1998). Hypermethylation of the p16INK4a promoter in colectomy specimens of patients with long-standing and extensive ulcerative colitis. Cancer Research, 58(17), 3942–3945.

    PubMed  CAS  Google Scholar 

  148. Issa, J. P., Ahuja, N., Toyota, M., Bronner, M. P., & Brentnall, T. A. (2001). Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Research, 61(9), 3573–3577.

    PubMed  CAS  Google Scholar 

  149. Shen, L., Kondo, Y., Rosner, G. L., Xiao, L., Hernandez, N. S., Vilaythong, J., et al. (2005). MGMT promoter methylation and field defect in sporadic colorectal cancer. Journal of the National Cancer Institute, 97(18), 1330–1338.

    PubMed  CAS  Google Scholar 

  150. Slaughter, D. P., Southwick, H. W., & Smejkal, W. (1953). Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer, 6(5), 963–968.

    PubMed  CAS  Google Scholar 

  151. Holst, C. R., Nuovo, G. J., Esteller, M., Chew, K., Baylin, S. B., Herman, J. G., et al. (2003). Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Research, 63(7), 1596–1601.

    PubMed  CAS  Google Scholar 

  152. Lehmann, U., Berg-Ribbe, I., Wingen, L. U., Brakensiek, K., Becker, T., Klempnauer, J., et al. (2005). Distinct methylation patterns of benign and malignant liver tumors revealed by quantitative methylation profiling. Clinical Cancer Research, 11(10), 3654–3660.

    PubMed  CAS  Google Scholar 

  153. Ye, C., Shrubsole, M. J., Cai, Q., Ness, R., Grady, W. M., Smalley, W., et al. (2006). Promoter methylation status of the MGMT, hMLH1, and CDKN2A/p16 genes in non-neoplastic mucosa of patients with and without colorectal adenomas. Oncology Reports, 16(2), 429–435.

    PubMed  CAS  Google Scholar 

  154. Dong, S. M., Lee, E. J., Jeon, E. S., Park, C. K., & Kim, K. M. (2005). Progressive methylation during the serrated neoplasia pathway of the colorectum. Modern Pathology, 18(2), 170–178.

    PubMed  CAS  Google Scholar 

  155. Ramirez, N., Bandres, E., Navarro, A., Pons, A., Jansa, S., Moreno, I., et al. (2008). Epigenetic events in normal colonic mucosa surrounding colorectal cancer lesions. European Journal of Cancer, 44(17), 2689–2695.

    PubMed  CAS  Google Scholar 

  156. Nakagawa, H., Nuovo, G. J., Zervos, E. E., Martin, E. W., Jr., Salovaara, R., Aaltonen, L. A., et al. (2001). Age-related hypermethylation of the 5′ region of MLH1 in normal colonic mucosa is associated with microsatellite-unstable colorectal cancer development. Cancer Research, 61(19), 6991–6995.

    PubMed  CAS  Google Scholar 

  157. Konishi, K., Shen, L., Jelinek, J., Watanabe, Y., Ahmed, S., Kaneko, K., et al. (2009). Concordant DNA methylation in synchronous colorectal carcinomas. Cancer Prevention Research, 2(9), 814–822.

    PubMed  Google Scholar 

  158. Hiranuma, C., Kawakami, K., Oyama, K., Ota, N., Omura, K., & Watanabe, G. (2004). Hypermethylation of the MYOD1 gene is a novel prognostic factor in patients with colorectal cancer. International Journal of Molecular Medicine, 13(3), 413–417.

    PubMed  CAS  Google Scholar 

  159. Kawakami, K., Ruszkiewicz, A., Bennett, G., Moore, J., Grieu, F., Watanabe, G., et al. (2006). DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. British Journal of Cancer, 94(4), 593–598.

    PubMed  CAS  Google Scholar 

  160. Hiraoka, S., Kato, J., Horii, J., Saito, S., Harada, K., Fujita, H., et al. (2010). Methylation status of normal background mucosa is correlated with occurrence and development of neoplasia in the distal colon. Human Pathology, 41(1), 38–47.

    PubMed  CAS  Google Scholar 

  161. Fujii, S., Tominaga, K., Kitajima, K., Takeda, J., Kusaka, T., Fujita, M., et al. (2005). Methylation of the oestrogen receptor gene in non-neoplastic epithelium as a marker of colorectal neoplasia risk in longstanding and extensive ulcerative colitis. Gut, 54(9), 1287–1292.

    PubMed  CAS  Google Scholar 

  162. Suzuki, K., Suzuki, I., Leodolter, A., Alonso, S., Horiuchi, S., Yamashita, K., et al. (2006). Global DNA demethylation in gastrointestinal cancer is age dependent and precedes genomic damage. Cancer Cell, 9(3), 199–207.

    PubMed  CAS  Google Scholar 

  163. Kaslow, D. C., & Migeon, B. R. (1987). DNA methylation stabilizes X chromosome inactivation in eutherians but not in marsupials: Evidence for multistep maintenance of mammalian X dosage compensation. Proceedings of the National Academy of Sciences of the United States of America, 84(17), 6210–6214.

    PubMed  CAS  Google Scholar 

  164. Ross, J. (1996). Comments on the article “Persistent confusion of total entropy and chemical system entropy in chemical thermodynamics” [(1996) Proc. Natl. Acad. Sci. USA 93, 7452–7453]. Proceedings of the National Academy of Sciences of the United States of America, 93, 14314 (discussion 14315).

    PubMed  CAS  Google Scholar 

  165. Toyota, M., & Issa, J. P. (1999). CpG island methylator phenotypes in aging and cancer. Seminars in Cancer Biology, 9(5), 349–357.

    PubMed  CAS  Google Scholar 

  166. Toyota, M., Ho, C., Ahuja, N., Jair, K. W., Li, Q., Ohe-Toyota, M., et al. (1999). Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Research, 59(10), 2307–2312.

    PubMed  CAS  Google Scholar 

  167. Issa, J. P. (2002). Epigenetic variation and human disease. Journal of Nutrition, 132(8 Suppl), 2388S–2392S.

    PubMed  CAS  Google Scholar 

  168. Cui, H., Horon, I. L., Ohlsson, R., Hamilton, S. R., & Feinberg, A. P. (1998). Loss of imprinting in normal tissue of colorectal cancer patients with microsatellite instability. Nature Medicine, 4(11), 1276–1280.

    PubMed  CAS  Google Scholar 

  169. Ji, W., Hernandez, R., Zhang, X. Y., Qu, G. Z., Frady, A., Varela, M., et al. (1997). DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutation Research, 379(1), 33–41.

    PubMed  CAS  Google Scholar 

  170. Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., Oxenhandler, R., Kuo, K. C., Gehrke, C. W., et al. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Research, 11(19), 6883–6894.

    PubMed  CAS  Google Scholar 

  171. Goelz, S. E., Vogelstein, B., Hamilton, S. R., & Feinberg, A. P. (1985). Hypomethylation of DNA from benign and malignant human colon neoplasms. Science, 228(4696), 187–190.

    PubMed  CAS  Google Scholar 

  172. Bariol, C., Suter, C., Cheong, K., Ku, S. L., Meagher, A., Hawkins, N., et al. (2003). The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. American Journal of Pathology, 162(4), 1361–1371.

    PubMed  CAS  Google Scholar 

  173. Hibi, K., Sakata, M., Kitamura, Y. H., Sakuraba, K., Shirahata, A., Goto, T., et al. (2009). Demethylation of the CD133 gene is frequently detected in advanced colorectal cancer. Anticancer Research, 29(6), 2235–2237.

    PubMed  CAS  Google Scholar 

  174. Hibi, K., Goto, T., Mizukami, H., Kitamura, Y. H., Sakuraba, K., Sakata, M., et al. (2009). Demethylation of the CDH3 gene is frequently detected in advanced colorectal cancer. Anticancer Research, 29(6), 2215–2217.

    PubMed  CAS  Google Scholar 

  175. Milicic, A., Harrison, L. A., Goodlad, R. A., Hardy, R. G., Nicholson, A. M., Presz, M., et al. (2008). Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Research, 68(19), 7760–7768.

    PubMed  CAS  Google Scholar 

  176. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.

    PubMed  CAS  Google Scholar 

  177. Baba, T., Convery, P. A., Matsumura, N., Whitaker, R. S., Kondoh, E., Perry, T., et al. (2009). Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene, 28(2), 209–218.

    PubMed  CAS  Google Scholar 

  178. Chalitchagorn, K., Shuangshoti, S., Hourpai, N., Kongruttanachok, N., Tangkijvanich, P., Thong-ngam, D., et al. (2004). Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene, 23(54), 8841–8846.

    PubMed  CAS  Google Scholar 

  179. Estecio, M. R., Gharibyan, V., Shen, L., Ibrahim, A. E., Doshi, K., He, R., et al. (2007). LINE-1 hypomethylation in cancer is highly variable and inversely correlated with microsatellite instability. PLoS ONE, 2(5), e399.

    PubMed  Google Scholar 

  180. Nosho, K., Irahara, N., Shima, K., Kure, S., Kirkner, G. J., Schernhammer, E. S., et al. (2008). Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS ONE, 3(11), e3698.

    PubMed  Google Scholar 

  181. Ogino, S., Nosho, K., Kirkner, G. J., Kawasaki, T., Chan, A. T., Schernhammer, E. S., et al. (2008). A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. Journal of the National Cancer Institute, 100(23), 1734–1738.

    PubMed  CAS  Google Scholar 

  182. Iacopetta, B., Grieu, F., Phillips, M., Ruszkiewicz, A., Moore, J., Minamoto, T., et al. (2007). Methylation levels of LINE-1 repeats and CpG island loci are inversely related in normal colonic mucosa. Cancer Science, 98(9), 1454–1460.

    PubMed  CAS  Google Scholar 

  183. Lee, M., Sup Han, W., Kyoung Kim, O., Hee Sung, S., Sun Cho, M., Lee, S. N., et al. (2006). Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathology, Research and Practice, 202(6), 415–424.

    PubMed  CAS  Google Scholar 

  184. Dominguez, G., Silva, J., Garcia, J. M., Silva, J. M., Rodriguez, R., Munoz, C., et al. (2003). Prevalence of aberrant methylation of p14ARF over p16INK4a in some human primary tumors. Mutation Research, 530(1–2), 9–17.

    PubMed  CAS  Google Scholar 

  185. Krtolica, K., Krajnovic, M., Usaj-Knezevic, S., Babic, D., Jovanovic, D., & Dimitrijevic, B. (2007). Comethylation of p16 and MGMT genes in colorectal carcinoma: Correlation with clinicopathological features and prognostic value. World Journal of Gastroenterology, 13(8), 1187–1194.

    PubMed  CAS  Google Scholar 

  186. Nagasaka, T., Sharp, G. B., Notohara, K., Kambara, T., Sasamoto, H., Isozaki, H., et al. (2003). Hypermethylation of O6-methylguanine-DNA methyltransferase promoter may predict nonrecurrence after chemotherapy in colorectal cancer cases. Clinical Cancer Research, 9(14), 5306–5312.

    PubMed  CAS  Google Scholar 

  187. Dammann, R., Yang, G., & Pfeifer, G. P. (2001). Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Research, 61(7), 3105–3109.

    PubMed  CAS  Google Scholar 

  188. Burbee, D. G., Forgacs, E., Zochbauer-Muller, S., Shivakumar, L., Fong, K., Gao, B., et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. Journal of the National Cancer Institute, 93(9), 691–699.

    PubMed  CAS  Google Scholar 

  189. Esteller, M., Corn, P. G., Baylin, S. B., & Herman, J. G. (2001). A gene hypermethylation profile of human cancer. Cancer Research, 61(8), 3225–3229.

    PubMed  CAS  Google Scholar 

  190. Zochbauer-Muller, S., Fong, K. M., Virmani, A. K., Geradts, J., Gazdar, A. F., & Minna, J. D. (2001). Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Research, 61(1), 249–255.

    PubMed  CAS  Google Scholar 

  191. Shivapurkar, N., Stastny, V., Suzuki, M., Wistuba, I. I., Li, L., Zheng, Y., et al. (2007). Application of a methylation gene panel by quantitative PCR for lung cancers. Cancer Letters, 247(1), 56–71.

    PubMed  CAS  Google Scholar 

  192. Jarrard, D. F., Bova, G. S., Ewing, C. M., Pin, S. S., Nguyen, S. H., Baylin, S. B., et al. (1997). Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes, Chromosomes and Cancer, 19(2), 90–96.

    CAS  Google Scholar 

  193. Marchini, S., Codegoni, A. M., Bonazzi, C., Chiari, S., & Broggini, M. (1997). Absence of deletions but frequent loss of expression of p16INK4 in human ovarian tumours. British Journal of Cancer, 76(2), 146–149.

    PubMed  CAS  Google Scholar 

  194. Dammann, R., Li, C., Yoon, J. H., Chin, P. L., Bates, S., & Pfeifer, G. P. (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nature Genetics, 25(3), 315–319.

    PubMed  CAS  Google Scholar 

  195. Sakamoto, N., Terai, T., Ajioka, Y., Abe, S., Kobayasi, O., Hirai, S., et al. (2004). Frequent hypermethylation of RASSF1A in early flat-type colorectal tumors. Oncogene, 23(55), 8900–8907.

    PubMed  CAS  Google Scholar 

  196. Lee, M. G., Kim, H. Y., Byun, D. S., Lee, S. J., Lee, C. H., Kim, J. I., et al. (2001). Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Research, 61(18), 6688–6692.

    PubMed  CAS  Google Scholar 

  197. Maruyama, R., Toyooka, S., Toyooka, K. O., Virmani, A. K., Zochbauer-Muller, S., Farinas, A. J., et al. (2002). Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clinical Cancer Research, 8(2), 514–519.

    PubMed  CAS  Google Scholar 

  198. Shames, D. S., Girard, L., Gao, B., Sato, M., Lewis, C. M., Shivapurkar, N., et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Medicine, 3(12), e486.

    PubMed  Google Scholar 

  199. Deng, G., Kakar, S., Okudiara, K., Choi, E., Sleisenger, M. H., & Kim, Y. S. (2009). Unique methylation pattern of oncostatin m receptor gene in cancers of colorectum and other digestive organs. Clinical Cancer Research, 15(5), 1519–1526.

    PubMed  CAS  Google Scholar 

  200. Kim, M. S., Chang, X., Yamashita, K., Nagpal, J. K., Baek, J. H., Wu, G., et al. (2008). Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene, 27(25), 3624–3634.

    PubMed  CAS  Google Scholar 

  201. Kim, M. S., Lebron, C., Nagpal, J. K., Chae, Y. K., Chang, X., Huang, Y., et al. (2008). Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochemical and Biophysical Research Communications, 370(1), 38–43.

    PubMed  CAS  Google Scholar 

  202. Fujikane, T., Nishikawa, N., Toyota, M., Suzuki, H., Nojima, M., Maruyama, R., et al. (2009). Genomic screening for genes upregulated by demethylation revealed novel targets of epigenetic silencing in breast cancer. Breast Cancer Research and Treatment, in press.

  203. Kim, M. S., Yamashita, K., Baek, J. H., Park, H. L., Carvalho, A. L., Osada, M., et al. (2006). N-methyl-d-aspartate receptor type 2B is epigenetically inactivated and exhibits tumor-suppressive activity in human esophageal cancer. Cancer Research, 66(7), 3409–3418.

    PubMed  CAS  Google Scholar 

  204. Melotte, V., Lentjes, M. H., van den Bosch, S. M., Hellebrekers, D. M., de Hoon, J. P., Wouters, K. A., et al. (2009). N-Myc downstream-regulated gene 4 (NDRG4): a candidate tumor suppressor gene and potential biomarker for colorectal cancer. Journal of the National Cancer Institute, 101(13), 916–927.

    PubMed  CAS  Google Scholar 

  205. Sato, F., Harpaz, N., Shibata, D., Xu, Y., Yin, J., Mori, Y., et al. (2002). Hypermethylation of the p14(ARF) gene in ulcerative colitis-associated colorectal carcinogenesis. Cancer Research, 62(4), 1148–1151.

    PubMed  CAS  Google Scholar 

  206. Zitt, M., & Muller, H. M. (2007). DNA methylation in colorectal cancer—Impact on screening and therapy monitoring modalities? Disease Markers, 23(1–2), 51–71.

    PubMed  CAS  Google Scholar 

  207. Ebert, M. P., Model, F., Mooney, S., Hale, K., Lograsso, J., Tonnes-Priddy, L., et al. (2006). Aristaless-like homeobox-4 gene methylation is a potential marker for colorectal adenocarcinomas. Gastroenterology, 131(5), 1418–1430.

    PubMed  CAS  Google Scholar 

  208. Miotto, E., Sabbioni, S., Veronese, A., Calin, G. A., Gullini, S., Liboni, A., et al. (2004). Frequent aberrant methylation of the CDH4 gene promoter in human colorectal and gastric cancer. Cancer Research, 64(22), 8156–8159.

    PubMed  CAS  Google Scholar 

  209. Tan, S. H., Ida, H., Lau, Q. C., Goh, B. C., Chieng, W. S., Loh, M., et al. (2007). Detection of promoter hypermethylation in serum samples of cancer patients by methylation-specific polymerase chain reaction for tumour suppressor genes including RUNX3. Oncology Reports, 18(5), 1225–1230.

    PubMed  CAS  Google Scholar 

  210. Lenhard, K., Bommer, G. T., Asutay, S., Schauer, R., Brabletz, T., Goke, B., et al. (2005). Analysis of promoter methylation in stool: A novel method for the detection of colorectal cancer. Clinical Gastroenterology and Hepatology, 3(2), 142–149.

    PubMed  CAS  Google Scholar 

  211. Jensen, L. H., Lindebjerg, J., Byriel, L., Kolvraa, S., & Cruger, D. G. (2008). Strategy in clinical practice for classification of unselected colorectal tumours based on mismatch repair deficiency. Colorectal Disease, 10(5), 490–497.

    PubMed  CAS  Google Scholar 

  212. Hibi, K., Nakayama, H., Kodera, Y., Ito, K., Akiyama, S., Nakao, A., et al. (2004). CDH13 promoter region is specifically methylated in poorly differentiated colorectal cancer. British Journal of Cancer, 90(5), 1030–1033.

    PubMed  CAS  Google Scholar 

  213. Wynter, C. V., Kambara, T., Walsh, M. D., Leggett, B. A., Young, J., & Jass, J. R. (2006). DNA methylation patterns in adenomas from FAP, multiple adenoma and sporadic colorectal carcinoma patients. International Journal of Cancer, 118(4), 907–915.

    CAS  Google Scholar 

  214. Kang, M. Y., Lee, B. B., Ji, Y. I., Jung, E. H., Chun, H. K., Song, S. Y., et al. (2008). Association of interindividual differences in p14ARF promoter methylation with single nucleotide polymorphism in primary colorectal cancer. Cancer, 112(8), 1699–1707.

    PubMed  CAS  Google Scholar 

  215. Wendt, M. K., Johanesen, P. A., Kang-Decker, N., Binion, D. G., Shah, V., & Dwinell, M. B. (2006). Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene, 25(36), 4986–4997.

    PubMed  CAS  Google Scholar 

  216. Yu, J., Tao, Q., Cheng, Y. Y., Lee, K. Y., Ng, S. S., Cheung, K. F., et al. (2009). Promoter methylation of the Wnt/beta-catenin signaling antagonist Dkk-3 is associated with poor survival in gastric cancer. Cancer, 115(1), 49–60.

    PubMed  CAS  Google Scholar 

  217. Herath, N. I., Doecke, J., Spanevello, M. D., Leggett, B. A., & Boyd, A. W. (2009). Epigenetic silencing of EphA1 expression in colorectal cancer is correlated with poor survival. British Journal of Cancer, 100(7), 1095–1102.

    PubMed  CAS  Google Scholar 

  218. Wang, J., Kataoka, H., Suzuki, M., Sato, N., Nakamura, R., Tao, H., et al. Downregulation of EphA7 by hypermethylation in colorectal cancer. Oncogene, 24(36), 5637–5647.

  219. Tominaga, K., Fujii, S., Mukawa, K., Fujita, M., Ichikawa, K., Tomita, S., et al. (2005). Prediction of colorectal neoplasia by quantitative methylation analysis of estrogen receptor gene in nonneoplastic epithelium from patients with ulcerative colitis. Clinical Cancer Research, 11(24 Pt 1), 8880–8885.

    PubMed  CAS  Google Scholar 

  220. Grady, W. M., Parkin, R. K., Mitchell, P. S., Lee, J. H., Kim, Y. H., Tsuchiya, K. D., et al. (2008). Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene, 27(27), 3880–3888.

    PubMed  CAS  Google Scholar 

  221. Brandes, J. C., van Engeland, M., Wouters, K. A., Weijenberg, M. P., & Herman, J. G. (2005). CHFR promoter hypermethylation in colon cancer correlates with the microsatellite instability phenotype. Carcinogenesis, 26(6), 1152–1156.

    PubMed  CAS  Google Scholar 

  222. Tian, X. Q., Zhang, Y., Sun, D., Zhao, S., Xiong, H., & Fang, J. (2009). Epigenetic silencing of LRRC3B in colorectal cancer. Scandinavian Journal of Gastroenterology, 44(1), 79–84.

    PubMed  CAS  Google Scholar 

  223. Lind, G. E., Ahlquist, T., Kolberg, M., Berg, M., Eknaes, M., Alonso, M. A., et al. (2008). Hypermethylated MAL gene - a silent marker of early colon tumorigenesis. J Transl Med, 6, 13.

    PubMed  Google Scholar 

  224. Piepoli, A., Cotugno, R., Merla, G., Gentile, A., Augello, B., Quitadamo, M., et al. (2009). Promoter methylation correlates with reduced NDRG2 expression in advanced colon tumour. BMC Med Genomics, 2, 11.

    PubMed  Google Scholar 

  225. Kim, M. S., Chang, X., Nagpal, J. K., Yamashita, K., Baek, J. H., Dasgupta, S., et al. (2008). The N-methyl-D-aspartate receptor type 2A is frequently methylated in human colorectal carcinoma and suppresses cell growth. Oncogene, 27(14), 2045–2054.

    PubMed  CAS  Google Scholar 

  226. Frigola, J., Muñoz, M., Clark, S. J., Moreno, V., Capellà, G., & Peinado, M. A. (2005). Hypermethylation of the prostacyclin synthase (PTGIS) promoter is a frequent event in colorectal cancer and associated with aneuploidy. Oncogene, 24(49), 7320–7326.

    PubMed  CAS  Google Scholar 

  227. Park, H. W., Kang, H. C., Kim, I. J., Jang, S. G., Kim, K., Yoon, H. J., et al. (2007). Correlation between hypermethylation of the RASSF2A promoter and K-ras/BRAF mutations in microsatellite-stable colorectal cancers. International Journal of Cancer, 120(1), 7–12.

    CAS  Google Scholar 

  228. Akino, K., Toyota, M., Suzuki, H., Mita, H., Sasaki, Y., Ohe-Toyota, M., et al. (2005). The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer. Gastroenterology, 129(1), 156–169.

    PubMed  CAS  Google Scholar 

  229. Hesson, L. B., Wilson, R., Morton, D., Adams, C., Walker, M., Maher, E. R., et al. (2005). CpG island promoter hypermethylation of a novel Ras-effector gene RASSF2A is an early event in colon carcinogenesis and correlates inversely with K-ras mutations. Oncogene, 24(24), 3987–3994.

    PubMed  CAS  Google Scholar 

  230. Cho, C. Y., Wang, J. H., Chang, H. C., Chang, C. K., Hung, W. C. Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. Journal of Cellular Physiology, 213(1), 65–69.

  231. Boumber, Y. A., Kondo, Y., Chen, X., Shen, L., Gharibyan, V., Konishi, K., et al. (2007). RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Research, 67(5), 1997–2005.

    PubMed  CAS  Google Scholar 

  232. Imamura, Y., Hibi, K., Koike, M., Fujiwara, M., Kodera, Y., Ito, K., et al. (2005). RUNX3 promoter region is specifically methylated in poorly-differentiated colorectal cancer. Anticancer Research, 25(4), 2627–2630.

    PubMed  CAS  Google Scholar 

  233. Subramaniam, M. M., Chan, J. Y., Soong, R., Ito, K., Yeoh, K. G., Wong, R., et al. (2009). RUNX3 inactivation in colorectal polyps arising through different pathways of colonic carcinogenesis. American Journal of Gastroenterology, 104(2), 426–436.

    PubMed  CAS  Google Scholar 

  234. Yang, E., Kang, H. J., Koh, K. H., Rhee, H., Kim, N. K., & Kim, H. (2007). Frequent inactivation of SPARC by promoter hypermethylation in colon cancers. International Journal of Cancer, 121(3), 567–575.

    CAS  Google Scholar 

  235. Ying, J., Li, H., Yu, J., Ng, K. M., Poon, F. F., Wong, S. C., et al. (2008). WNT5A exhibits tumor-suppressive activity through antagonizing the Wnt/beta-catenin signaling, and is frequently methylated in colorectal cancer. Clinical Cancer Research, 14(1), 55–61.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by National Cancer Institute grant (U01-CA84986), Oncomethylome Sciences, and the Flight Attendant Medical Research Institute Young Clinical Scientist Award (M.S. Kim).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sidransky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, M.S., Lee, J. & Sidransky, D. DNA methylation markers in colorectal cancer. Cancer Metastasis Rev 29, 181–206 (2010). https://doi.org/10.1007/s10555-010-9207-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9207-6

Keywords

Navigation