Skip to main content

Advertisement

Log in

PRL PTPs: mediators and markers of cancer progression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Aberrant protein tyrosine phosphorylation resulting from the altered activity of protein tyrosine phosphatases (PTPs) is increasingly being implicated in the genesis and progression of human cancer. Accumulating evidence indicates that the dysregulated expression of members of the phosphatase of regenerating liver (PRL) subgroup of PTPs is linked to these processes. Enhanced expression of the PRLs, notably PRL-1 and PRL-3, promotes the acquisition of cellular properties that confer tumorigenic and metastatic abilities. Up-regulation of PRL-3 is associated with the progression and eventual metastasis of several types of human cancer. Indeed, PRL-3 shows promise as a biomarker and prognostic indicator in colorectal, breast, and gastric cancers. However, the substrates and molecular mechanisms of action of the PRLs have remained elusive. Recent findings indicate that PRLs may function in regulating cell adhesion structures to effect epithelial-mesenchymal transition. The identification of PRL substrates is key to understanding their roles in cancer progression and exploiting their potential as exciting new therapeutic targets for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

cAMP:

cyclic-3′,5′-adenosine monophosphate

CRC:

colorectal carcinoma

DFS:

disease-free survival

DSP:

dual specificity phosphatase

ECM:

extracellular matrix

EGFP:

enhanced green fluorescent protein

EMT:

epithelial-mesenchymal transition

EST:

expressed sequence tag

FISH:

fluorescence in situ hybridization

GGT:

geranylgeranyltransferase

PCR:

polymerase chain reaction

PRL:

phosphatase of regenerating liver

PTP:

protein tyrosine phosphatase

References

  1. Mohn, K. L., Laz, T. M., Hsu, J. C., Melby, A. E., Bravo, R., & Taub, R. (1991). The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Molecular and Cellular Biology, 11, 381–390.

    PubMed  CAS  Google Scholar 

  2. Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S., & Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Molecular and Cellular Biology, 14, 3752–3762.

    PubMed  CAS  Google Scholar 

  3. Montagna, M., Serova, O., Sylla, B. S., Feunteun, J., & Lenoir, G. M. (1995). A 100-kb physical and transcriptional map around the EDH17B2 gene: identification of three novel genes and a pseudogene of a human homologue of the rat PRL-1 tyrosine phosphatase. Human Genetics, 96, 532–538.

    Article  PubMed  CAS  Google Scholar 

  4. Cates, C. A., Michael, R. L., Stayrook, K. R., Harvey, K. A., Burke, Y. D., Randall, S. K., et al. (1996). Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Letters, 110, 49–55.

    Article  PubMed  CAS  Google Scholar 

  5. Zeng, Q., Hong, W., & Tan, Y. H. (1998). Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochemical and Biophysical Research Communications, 244, 421–427.

    Article  PubMed  CAS  Google Scholar 

  6. Zeng, Q., Si, X., Horstmann, H., Xu, Y., Hong, W., & Pallen, C. J. (2000). Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. Journal of Biological Chemistry, 275, 21444–21452.

    Article  PubMed  CAS  Google Scholar 

  7. Sun, J. P., Wang, W. Q., Yang, H., Liu, S., Liang, F., Fedorov, A. A., et al. (2005). Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry, 44, 12009–12021.

    Article  PubMed  CAS  Google Scholar 

  8. Jeong, D. G., Kim, S. J., Kim, J. H., Son, J. H., Park, M. R., Lim, S. M., et al. (2005). Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Journal of Molecular Biology, 345, 401–413.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, K. A., Song, J. S., Jee, J., Sheen, M. R., Lee, C., Lee, T. G., et al. (2004). Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Letters, 565, 181–187.

    Article  PubMed  CAS  Google Scholar 

  10. Kozlov, G., Cheng, J., Ziomek, E., Banville, D., Gehring, K., & Ekiel, I. (2004). Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. Journal of Biological Chemistry, 279, 11882–11889.

    Article  PubMed  CAS  Google Scholar 

  11. Zhou, H., Gallina, M., Mao, H., Nietlispach, D., Betz, S. F., Fetrow, J. S., et al. (2003). 1H, 13C and 15N resonance assignments and secondary structure of the human protein tyrosine phosphatase, PRL-2. Journal of Biomolecular NMR, 27, 397–398.

    Article  PubMed  CAS  Google Scholar 

  12. Barford, D., Das, A. K., & Egloff, M. P. (1998). The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annual Review of Biophysics and Biomolecular Structure, 27, 133–164.

    Article  PubMed  CAS  Google Scholar 

  13. Denu, J. M., Stuckey, J. A., Saper, M. A., & Dixon, J. E. (1996). Form and function in protein dephosphorylation. Cell, 87, 361–364.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, Z. Y. (1998). Protein-tyrosine phosphatases: Biological function, structural characteristics, and mechanism of catalysis. Critical Reviews in Biochemistry and Molecular Biology, 33, 1–52.

    Article  PubMed  Google Scholar 

  15. Wang, J., Kirby, C. E., & Herbst, R. (2002). The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. Journal of Biological Chemistry, 277, 46659–46668.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang, Z. Y., Palfey, B. A., Wu, L., & Zhao, Y. (1995). Catalytic function of the conserved hydroxyl group in the protein tyrosine phosphatase signature motif. Biochemistry, 34, 16389–16396.

    Article  PubMed  CAS  Google Scholar 

  17. Denu, J. M., & Dixon, J. E. (1995). A catalytic mechanism for the dual-specific phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 92, 5910–5914.

    Article  PubMed  CAS  Google Scholar 

  18. Sun, J. P., Luo, Y., Yu, X., Wang, W. Q., Zhou, B., Liang, F., et al. (2007). Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. Journal of Biological Chemistry, 282, 29043–29051.

    Article  PubMed  CAS  Google Scholar 

  19. Yu, L., Kelly, U., Ebright, J. N., Malek, G., Saloupis, P., Rickman, D. W., et al. (2007). Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina. Biochimica et Biophysica Acta, 1773, 1473–1482.

    PubMed  CAS  Google Scholar 

  20. Dumaual, C. M., Sandusky, G. E., Crowell, P. L., & Randall, S. K. (2006). Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues. Journal of Histochemistry and Cytochemistry, 54, 1401–1412.

    Article  PubMed  CAS  Google Scholar 

  21. Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., et al. (2001). Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochemical and Biophysical Research Communications, 283, 1061–1068.

    Article  PubMed  CAS  Google Scholar 

  22. Wang, Q., Holmes, D. I., Powell, S. M., Lu, Q. L., & Waxman, J. (2002). Analysis of stromal–epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Letters, 175, 63–69.

    Article  PubMed  CAS  Google Scholar 

  23. Kato, H., Semba, S., Miskad, U. A., Seo, Y., Kasuga, M., & Yokozaki, H. (2004). High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: A predictive molecular marker of metachronous liver and lung metastases. Clinical Cancer Research, 10, 7318–7328.

    Article  PubMed  CAS  Google Scholar 

  24. Miskad, U. A., Semba, S., Kato, H., & Yokozaki, H. (2004). Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology, 71, 176–184.

    Article  PubMed  CAS  Google Scholar 

  25. Rouleau, C., Roy, A., St Martin, T., Dufault, M. R., Boutin, P., Liu, D., et al. (2006). Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Molecular Cancer Therapeutics, 5, 219–229.

    Article  PubMed  CAS  Google Scholar 

  26. Radke, I., Gotte, M., Kersting, C., Mattsson, B., Kiesel, L., & Wulfing, P. (2006). Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. British Journal of Cancer, 95, 347–354.

    Article  PubMed  CAS  Google Scholar 

  27. Si, X., Zeng, Q., Ng, C. H., Hong, W., & Pallen, C. J. (2001). Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II. Journal of Biological Chemistry, 276, 32875–32882.

    Article  PubMed  CAS  Google Scholar 

  28. Fiordalisi, J. J., Keller, P. J., & Cox, A. D. (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Research, 66, 3153–3161.

    Article  PubMed  Google Scholar 

  29. Diamond, R. H., Peters, C., Jung, S. P., Greenbaum, L. E., Haber, B. A., Silberg, D. G., et al. (1996). Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine. American Journal of Physiology, 271, G121–129.

    PubMed  CAS  Google Scholar 

  30. Kong, W., Swain, G. P., Li, S., & Diamond, R. H. (2000). PRL-1 PTPase expression is developmentally regulated with tissue-specific patterns in epithelial tissues. American Journal of Physiology -l Gastrointestinal and Liver Physiology, 279, G613–G621.

    CAS  Google Scholar 

  31. Yarovinsky, T. O., Rickman, D. W., Diamond, R. H., Taub, R., Hageman, G. S., & Bowes Rickman, C. (2000). Expression of the protein tyrosine phosphatase, phosphatase of regenerating liver 1, in the outer segments of primate cone photoreceptors. Brain Research. Molecular Brain Research, 77, 95–103.

    Article  PubMed  CAS  Google Scholar 

  32. Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343–1346.

    Article  PubMed  CAS  Google Scholar 

  33. Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., et al. (2003). PRL-3 expression in metastatic cancers. Clinical Cancer Research, 9, 5607–5615.

    PubMed  CAS  Google Scholar 

  34. Li, J., Guo, K., Koh, V. W., Tang, J. P., Gan, B. Q., Shi, H., et al. (2005). Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases. Clinical Cancer Research, 11, 2195–2204.

    Article  PubMed  CAS  Google Scholar 

  35. Peng, L., Ning, J., Meng, L., & Shou, C. (2004). The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. Journal of Cancer Research and Clinical Oncology, 130, 521–526.

    Article  PubMed  CAS  Google Scholar 

  36. Wang, Y., Li, Z. F., He, J., Li, Y. L., Zhu, G. B., & Zhang, L. H. (2007). Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. International Journal of Colorectal Disease, 22, 1179–1184.

    Article  PubMed  Google Scholar 

  37. Wang, L., Peng, L., Dong, B., Kong, L., Meng, L., Yan, L., et al. (2006). Overexpression of phosphatase of regenerating liver-3 in breast cancer: Association with a poor clinical outcome. Annals of Oncology, 17, 1517–1522.

    Article  PubMed  CAS  Google Scholar 

  38. Miskad, U. A., Semba, S., Kato, H., Matsukawa, Y., Kodama, Y., Mizuuchi, E., et al. (2007). High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: An in situ hybridization study. Virchows Archiv, 450, 303–310.

    Article  PubMed  CAS  Google Scholar 

  39. Li, Z. R., Wang, Z., Zhu, B. H., He, Y. L., Peng, J. S., Cai, S. R., et al. (2007). Association of tyrosine PRL-3 phosphatase protein expression with peritoneal metastasis of gastric carcinoma and prognosis. Surgery Today, 37, 646–651.

    Article  PubMed  CAS  Google Scholar 

  40. Wu, X., Zeng, H., Zhang, X., Zhao, Y., Sha, H., Ge, X., et al. (2004). Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. American Journal of Pathology, 164, 2039–2054.

    PubMed  CAS  Google Scholar 

  41. Polato, F., Codegoni, A., Fruscio, R., Perego, P., Mangioni, C., Saha, S., et al. (2005). PRL-3 phosphatase is implicated in ovarian cancer growth. Clinical Cancer Research, 11, 6835–6839.

    Article  PubMed  CAS  Google Scholar 

  42. Yamashita, S., Masuda, Y., Matsumoto, K., Okumura, Y., Matsuzaki, H., Kurizaki, T., et al. (2007). Down-regulation of the human PRL-3 gene is associated with the metastasis of primary non-small cell lung cancer. Annals of Thoracic and Cardiovascular Surgery, 13, 236–239.

    PubMed  Google Scholar 

  43. Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., et al. (2003). PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 63, 2716–2722.

    PubMed  CAS  Google Scholar 

  44. Guo, K., Li, J., Tang, J. P., Koh, V., Gan, B. Q., & Zeng, Q. (2004). Catalytic domain of PRL-3 plays an essential role in tumor metastasis: Formation of PRL-3 tumors inside the blood vessels. Cancer Biology & Therapy, 3, 945–951.

    Article  CAS  Google Scholar 

  45. Qian, F., Li, Y. P., Sheng, X., Zhang, Z. C., Song, R., Dong, W., et al. (2007). PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo. Molecular Medicine, 13, 151–159.

    PubMed  CAS  Google Scholar 

  46. Li, Z., Zhan, W., Wang, Z., Zhu, B., He, Y., Peng, J., et al. (2006). Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochemical and Biophysical Research Communications, 348, 229–237.

    Article  PubMed  CAS  Google Scholar 

  47. St Croix, B., Rago, C., Velculescu, V., Traverso, G., Romans, K. E., Montgomery, E., et al. (2000). Genes expressed in human tumor endothelium. Science, 289, 1197–1202.

    Article  PubMed  CAS  Google Scholar 

  48. Guo, K., Li, J., Wang, H., Osato, M., Tang, J. P., Quah, S. Y., et al. (2006). PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo. Cancer Research, 66, 9625–9635.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P., & Zeng, Q. (2007). PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Research, 67, 2922–2926.

    Article  PubMed  CAS  Google Scholar 

  50. Nicholson, K. M., & Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 14, 381–395.

    Article  PubMed  CAS  Google Scholar 

  51. Dillon, R. L., White, D. E., & Muller, W. J. (2007). The phosphatidyl inositol 3-kinase signaling network: Implications for human breast cancer. Oncogene, 26, 1338–1345.

    Article  PubMed  CAS  Google Scholar 

  52. Altomare, D. A., & Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene, 24, 7455–7464.

    Article  PubMed  CAS  Google Scholar 

  53. Larue, L., & Bellacosa, A. (2005). Epithelial–mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 24, 7443–7454.

    Article  PubMed  CAS  Google Scholar 

  54. Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.

    Article  PubMed  CAS  Google Scholar 

  55. Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial–mesenchymal transition in cancer pathology. Pathology, 39, 305–318.

    Article  PubMed  CAS  Google Scholar 

  56. Barbera, M. J., Puig, I., Dominguez, D., Julien-Grille, S., Guaita-Esteruelas, S., Peiro, S., et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene, 23, 7345–7354.

    Article  PubMed  CAS  Google Scholar 

  57. Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6, 931–940.

    Article  PubMed  CAS  Google Scholar 

  58. Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., et al. (2007). Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene, 26, 7445–7456.

    Article  PubMed  CAS  Google Scholar 

  59. Li, Z., Wang, L., Zhang, W., Fu, Y., Zhao, H., Hu, Y., et al. (2007). Restoring E-cadherin-mediated cell–cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochemical and Biophysical Research Communications, 363, 165–170.

    Article  PubMed  CAS  Google Scholar 

  60. Watabe-Uchida, M., Uchida, N., Imamura, Y., Nagafuchi, A., Fujimoto, K., Uemura, T., et al. (1998). Alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. Journal of Cell Biology, 142, 847–857.

    Article  PubMed  CAS  Google Scholar 

  61. Kawajiri, A., Itoh, N., Fukata, M., Nakagawa, M., Yamaga, M., Iwamatsu, A., et al. (2000). Identification of a novel beta-catenin-interacting protein. Biochemical and Biophysical Research Communications, 273, 712–717.

    Article  PubMed  CAS  Google Scholar 

  62. Subauste, M. C., Nalbant, P., Adamson, E. D., & Hahn, K. M. (2005). Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. Journal of Biological Chemistry, 280, 5676–5681.

    Article  PubMed  CAS  Google Scholar 

  63. Hehlgans, S., Haase, M., & Cordes, N. (2007). Signalling via integrins: Implications for cell survival and anticancer strategies. Biochimica et Biophysica Acta, 1775, 163–180.

    PubMed  CAS  Google Scholar 

  64. Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.

    Article  PubMed  CAS  Google Scholar 

  65. Peng, L., Jin, G., Wang, L., Guo, J., Meng, L., & Shou, C. (2006). Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochemical and Biophysical Research Communications, 342, 179–183.

    Article  PubMed  CAS  Google Scholar 

  66. Liang, F., Liang, J., Wang, W. Q., Sun, J. P., Udho, E., & Zhang, Z. Y. (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Journal of Biological Chemistry, 282, 5413–5419.

    Article  PubMed  CAS  Google Scholar 

  67. Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: A protein-tyrosine kinase involved in regulation of src family kinases. Journal of Biological Chemistry, 266, 24249–24252.

    PubMed  CAS  Google Scholar 

  68. Kunte, D. P., Wali, R. K., Koetsier, J. L., Hart, J., Kostjukova, M. N., Kilimnik, A. Y., et al. (2005). Down-regulation of the tumor suppressor gene C-terminal Src kinase: an early event during premalignant colonic epithelial hyperproliferation. FEBS Letters, 579, 3497–3502.

    Article  PubMed  CAS  Google Scholar 

  69. Defilippi, P., Di Stefano, P., & Cabodi, S. (2006). p130Cas: A versatile scaffold in signaling networks. Trends in Cell Biology, 16, 257–263.

    Article  PubMed  CAS  Google Scholar 

  70. Achiwa, H., & Lazo, J. S. (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Research, 67, 643–650.

    Article  PubMed  CAS  Google Scholar 

  71. Shah, A. N., & Gallick, G. E. (2007). Src, chemoresistance and epithelial to mesenchymal transition: are they related? Anti-Cancer Drugs, 18, 371–375.

    Article  PubMed  CAS  Google Scholar 

  72. Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H., & Nicosia, S. V. (2005). The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 24, 7482–7492.

    Article  PubMed  CAS  Google Scholar 

  73. Avizienyte, E., & Frame, M. C. (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Current Opinion in Cell Biology, 17, 542–547.

    Article  PubMed  CAS  Google Scholar 

  74. Werner, S. R., Lee, P. A., DeCamp, M. W., Crowell, D. N., Randall, S. K., & Crowell, P. L. (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Letters, 202, 201–211.

    Article  PubMed  CAS  Google Scholar 

  75. Gnainsky, Y., Spira, G., Paizi, M., Bruck, R., Nagler, A., Genina, O., et al. (2006). Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone. Cell and Tissue Research, 324, 385–394.

    Article  PubMed  CAS  Google Scholar 

  76. Kadambi, V. J., Lorenz, J. N., Stagliano, N. E., Matter, W. F., Wang, X. S., Bloem, L., et al. (2000). Impaired ventricular relaxation resulting from cardiac-specific overexpression of a human prenylated protein tyrosine phosphatase. Circulation (Suppl), 102, II–268.

    Google Scholar 

  77. Chinnaiyan, K. M., Alexander, D., & McCullough, P. A. (2005). Role of angiotensin II in the evolution of diastolic heart failure. Journal of Clinical Hypertension (Greenwich), 7, 740–747.

    Article  CAS  Google Scholar 

  78. Ehrlich, J. R., Hohnloser, S. H., & Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. European Heart Journal, 27, 512–518.

    Article  PubMed  CAS  Google Scholar 

  79. Peters, C. S., Liang, X., Li, S., Kannan, S., Peng, Y., Taub, R., et al. (2001). ATF-7, a novel bZIP protein, interacts with the PRL-1 protein-tyrosine phosphatase. Journal of Biological Chemistry, 276, 13718–13726.

    Article  PubMed  CAS  Google Scholar 

  80. Monaco, S. E., Angelastro, J. M., Szabolcs, M., & Greene, L. A. (2007). The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. International Journal of Cancer, 120, 1883–1890.

    Article  CAS  Google Scholar 

  81. Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2, 107–117.

    Article  PubMed  CAS  Google Scholar 

  82. Magnusson, C., Svensson, A., Christerson, U., & Tagerud, S. (2005). Denervation-induced alterations in gene expression in mouse skeletal muscle. European Journal of Neuroscience, 21, 577–580.

    Article  PubMed  Google Scholar 

  83. Yuan, L., Chen, J., Lin, B., Zhang, J., & Zhang, S. (2007). Differential expression and functional constraint of PRL-2 in hibernating bat. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 148, 375–381.

    Article  CAS  Google Scholar 

  84. Peng, Y., Du, K., Ramirez, S., Diamond, R. H., & Taub, R. (1999). Mitogenic up-regulation of the PRL-1 protein-tyrosine phosphatase gene by Egr-1. Egr-1 activation is an early event in liver regeneration. Journal of Biological Chemistry, 274, 4513–4520.

    Article  PubMed  CAS  Google Scholar 

  85. Peng, Y., Genin, A., Spinner, N. B., Diamond, R. H., & Taub, R. (1998). The gene encoding human nuclear protein tyrosine phosphatase, PRL-1. Cloning, chromosomal localization, and identification of an intron enhancer. Journal of Biological Chemistry, 273, 17286–17295.

    Article  PubMed  CAS  Google Scholar 

  86. Gregory, R. C., Lord, K. A., Panek, L. B., Gaines, P., Dillon, S. B., & Wojchowski, D. M. (2000). Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine, 12, 845–857.

    Article  PubMed  CAS  Google Scholar 

  87. McLean, D. J., Friel, P. J., Pouchnik, D., & Griswold, M. D. (2002). Oligonucleotide microarray analysis of gene expression in follicle-stimulating hormone-treated rat Sertoli cells. Molecular Endocrinology, 16, 2780–2792.

    Article  PubMed  CAS  Google Scholar 

  88. Schmidt, J., de Avila, J., & McLean, D. (2006). Regulation of protein tyrosine phosphatase 4a1, B-cell translocation gene 2, nuclear receptor subfamily 4a1 and diacylglycerol O-acyltransferase 1 by follicle stimulating hormone in the rat ovary. Reproduction, Fertility, and Development, 18, 757–765.

    Article  PubMed  CAS  Google Scholar 

  89. Scarlato, M., Beesley, J., & Pleasure, D. (2000). Analysis of oligodendroglial differentiation using cDNA arrays. Journal of Neuroscience Research, 59, 430–435.

    Article  PubMed  CAS  Google Scholar 

  90. Takano, S., Fukuyama, H., Fukumoto, M., Kimura, J., Xue, J. H., Ohashi, H., et al. (1996). PRL-1, a protein tyrosine phosphatase, is expressed in neurons and oligodendrocytes in the brain and induced in the cerebral cortex following transient forebrain ischemia. Brain Research. Molecular Brain Research, 40, 105–115.

    Article  PubMed  CAS  Google Scholar 

  91. Grimes, J. A., Fraser, S. P., Stephens, G. J., Downing, J. E., Laniado, M. E., Foster, C. S., et al. (1995). Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: Contribution to invasiveness in vitro. FEBS Letters, 369, 290–294.

    Article  PubMed  CAS  Google Scholar 

  92. Fraser, S. P., Salvador, V., Manning, E. A., Mizal, J., Altun, S., Raza, M., et al. (2003). Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. Journal of Cellular Physiology, 195, 479–487.

    Article  PubMed  CAS  Google Scholar 

  93. Raghavendra Prasad, H. S., Qi, Z., Srinivasan, K. N., & Gopalakrishnakone, P. (2004). Potential effects of tetrodotoxin exposure to human glial cells postulated using microarray approach. Toxicon, 44, 597–608.

    Article  PubMed  CAS  Google Scholar 

  94. Tonks, N. K. (2005). Redox redux: Revisiting PTPs and the control of cell signaling. Cell, 121, 667–670.

    Article  PubMed  CAS  Google Scholar 

  95. den Hertog, J., Groen, A., & van der Wijk, T. (2005). Redox regulation of protein-tyrosine phosphatases. Archives of Biochemistry and Biophysics, 434, 11–15.

    Article  PubMed  CAS  Google Scholar 

  96. Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., et al. (2006). Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 16, 2996–2999.

    Article  PubMed  CAS  Google Scholar 

  97. Choi, S. K., Oh, H. M., Lee, S. K., Jeong, D. G., Ryu, S. E., Son, K. H., et al. (2006). Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural Product Research, 20, 341–346.

    Article  PubMed  CAS  Google Scholar 

  98. Dursina, B., Reents, R., Delon, C., Wu, Y., Kulharia, M., Thutewohl, M., et al. (2006). Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. Journal of the American Chemical Society, 128, 2822–2835.

    Article  PubMed  CAS  Google Scholar 

  99. Pathak, M. K., Dhawan, D., Lindner, D. J., Borden, E. C., Farver, C., & Yi, T. (2002). Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Molecular Cancer Therapeutics, 1, 1255–1264.

    PubMed  CAS  Google Scholar 

  100. Sands, M., Kron, M. A., & Brown, R. B. (1985). Pentamidine: A review. Reviews of Infectious Diseases, 7, 625–634.

    PubMed  CAS  Google Scholar 

  101. Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93, 2325–2327.

    Article  PubMed  CAS  Google Scholar 

  102. Lebowitz, P. F., Casey, P. J., Prendergast, G. C., & Thissen, J. A. (1997). Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. Journal of Biological Chemistry, 272, 15591–15594.

    Article  PubMed  CAS  Google Scholar 

  103. Whyte, D. B., Kirschmeier, P., Hockenberry, T. N., Nunez-Oliva, I., James, L., Catino, J. J., et al. (1997). K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. Journal of Biological Chemistry, 272, 14459–14464.

    Article  PubMed  CAS  Google Scholar 

  104. Rowell, C. A., Kowalczyk, J. J., Lewis, M. D., & Garcia, A. M. (1997). Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. Journal of Biological Chemistry, 272, 14093–14097.

    Article  PubMed  CAS  Google Scholar 

  105. Mijimolle, N., Velasco, J., Dubus, P., Guerra, C., Weinbaum, C. A., Casey, P. J., et al. (2005). Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell, 7, 313–324.

    Article  PubMed  CAS  Google Scholar 

  106. Konstantinopoulos, P. A., Karamouzis, M. V., & Papavassiliou, A. G. (2007). Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nature Reviews Drug Discovery, 6, 541–555.

    Article  PubMed  CAS  Google Scholar 

  107. Parker, B. S., Argani, P., Cook, B. P., Liangfeng, H., Chartrand, S. D., Zhang, M., et al. (2004). Alterations in vascular gene expression in invasive breast carcinoma. Cancer Research, 64, 7857–7866.

    Article  PubMed  CAS  Google Scholar 

  108. Anant, J. S., Desnoyers, L., Machius, M., Demeler, B., Hansen, J. C., Westover, K. D., et al. (1998). Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry, 37, 12559–12568.

    Article  PubMed  CAS  Google Scholar 

  109. Andres, D. A., Seabra, M. C., Brown, M. S., Armstrong, S. A., Smeland, T. E., Cremers, F. P., et al. (1993). cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell, 73, 1091–1099.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by a grant from the Cancer Research Society (to C.J.P.). C.J.P. holds an Investigatorship Award from the Child and Family Research Institute. D.C.B. is supported by a Canadian Institutes of Health Research Canada Doctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Pallen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessette, D.C., Qiu, D. & Pallen, C.J. PRL PTPs: mediators and markers of cancer progression. Cancer Metastasis Rev 27, 231–252 (2008). https://doi.org/10.1007/s10555-008-9121-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-008-9121-3

Keywords

Navigation