Skip to main content

Advertisement

Log in

Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cancer metastasis is a complex, dynamic process that begins with dissemination of cells from the primary tumor and culminates in the formation of clinically detectable, overt metastases at one or more discontinuous secondary sites. Evidence from in vivo video microscopy as well as PCR and immunohistochemical studies suggest that cancer cell dissemination is an early event in tumor progression and that cells may persist in a potentially dormant state for a prolonged period. Similarly, the mechanisms by which these disseminated cells initiate growth and complete the process of metastatic colonization remain largely unknown. Understanding signal transduction pathways regulating this final step of metastasis is therefore critical for successful clinical management. While genetic mutations or epigenetic changes may be required for a cell or group of cells to separate and survive distant from the primary tumor, the microenvironment within secondary tissues plays a substantial role in influencing whether disseminated cells survive and proliferate. Our work is focused on using metastasis suppressor proteins to gain insight into why the majority of disseminated cells, which should be fully malignant, do not proliferate immediately at secondary sites. The translational goal of this work is to identify targets for inhibiting metastatic growth and prolonging disease-free survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Steeg, P. S. (2006). Tumor metastasis: Mechanistic insights and clinical challenges. Nature Medicine, 12, 895–904.

    Article  PubMed  CAS  Google Scholar 

  2. Ward, J. F., & Moul, J. W. (2005). Rising prostate-specific antigen after primary prostate cancer therapy. Nature Clinical Practice. Urology, 2, 174–182.

    Article  PubMed  Google Scholar 

  3. Steeg, P. (2003). Metastasis suppressors alter the signal transduction of cancer cells. Nature Reviews. Cancer, 3, 55–63.

    Article  PubMed  CAS  Google Scholar 

  4. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.

    Article  PubMed  CAS  Google Scholar 

  5. Kauffman, E. C., Robinson, V. L., Stadler, W. M., Sokoloff, M. H., & Rinker-Schaeffer, C. W. (2003). Metastasis suppression: The evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. Journal of Urology, 169, 1122–1133.

    Article  PubMed  Google Scholar 

  6. Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., et al. (1998). Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. American Journal of Pathology, 153, 865–873.

    PubMed  CAS  Google Scholar 

  7. Nakao, A., Fujii, T., Sugimoto, H., Kanazumi, N., Nomoto, S., Kodera, Y., et al. (2006). Oncological problems in pancreatic cancer surgery. World Journal of Gastroenterology, 12, 4466–4472.

    PubMed  Google Scholar 

  8. Rinker-Schaeffer, C. W., O’Keefe, J. P., Welch, D. R., & Theodorescu, D. (2006). Metastasis suppressor proteins: Discovery, molecular mechanisms, and clinical application. Clinical Cancer Research, 12, 3882–3889.

    Article  PubMed  CAS  Google Scholar 

  9. Yang, D., Tournier, C., Wysk, M., Lu, H. T., Xu, J., Davis, R. J., et al. (1997). Targeted disruption of the MKK4 gene causes embryonic death, inhibition of c-Jun NH2-terminal kinase activation, and defects in AP-1 transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 94, 3004–3009.

    Article  PubMed  CAS  Google Scholar 

  10. Ganiatsas, S., Kwee, L., Fujiwara, Y., Perkins, A., Ikeda, T., & Labow, M. A. (1998). SEK1 deficiency reveals mitogen-activated protein kinase cascade crossregulation and leads to abnormal hepatogenesis. Proceedings of the National Academy of Sciences of the United States of America, 95, 6881–6886.

    Article  PubMed  CAS  Google Scholar 

  11. Vander Griend, D. J., Kocherginsky, M., Hickson, J. A., Stadler, W. M., Lin, A., & Rinker-Schaeffer, C. W. (2005). Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Research, 65, 10984–10991.

    Article  PubMed  CAS  Google Scholar 

  12. Hickson, J. A., Huo, D., Vander Griend, D. J., Lin, A., Rinker-Schaeffer, C. W., & Yamada, S. D. (2006). The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Research, 66, 2264–2270.

    Article  PubMed  CAS  Google Scholar 

  13. Kyriakis, J. M., & Avruch, J. (2001). Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiological Reviews, 81, 807–869.

    PubMed  CAS  Google Scholar 

  14. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., et al. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 22, 153–183.

    Article  PubMed  CAS  Google Scholar 

  15. Ip, Y. T., & Davis, R. J. (1998). Signal transduction by the c-Jun N-terminal kinase (JNK)—From inflammation to development. Current Opinion in Cell Biology, 10, 205–219.

    Article  PubMed  CAS  Google Scholar 

  16. Lin, A. (2003). Activation of the JNK signaling pathway: Breaking the brake on apoptosis. Bioessays, 25, 17–24.

    Article  PubMed  CAS  Google Scholar 

  17. Yoshida, B. A., Dubauskas, Z., Chekmareva, M. A., Christiano, T. R., Stadler, W. M., & Rinker-Schaeffer, C. W. (1999). Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Research, 59, 5483–5487.

    PubMed  CAS  Google Scholar 

  18. Yamada, S. D., Hickson, J. A., Hrobowski, Y., Vander Griend, D. J., Benson, D., Montag, A., et al. (2002). Mitogen-activated protein kinase kinase 4 (MKK4) acts as a metastasis suppressor gene in human ovarian carcinoma. Cancer Research, 62, 6717–6723.

    PubMed  CAS  Google Scholar 

  19. Davis, R. J. (1999). Signal transduction by the c-Jun N-terminal kinase. Biochemical Society Symposium, 64, 1–12.

    PubMed  CAS  Google Scholar 

  20. Karin, M., Liu, Z., & Zandi, E. (1997). AP-1 function and regulation. Current Opinion in Cell Biology, 9, 240–246.

    Article  PubMed  CAS  Google Scholar 

  21. van Dam, H., & Castellazzi, M. (2001). Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene, 20, 2453–2464.

    Article  PubMed  CAS  Google Scholar 

  22. Shaulian, E., & Karin, M. (2001). AP-1 in cell proliferation and survival. Oncogene, 20, 2390–2400.

    Article  PubMed  CAS  Google Scholar 

  23. Hayakawa, J., Mittal, S., Wang, Y., Korkmaz, K. S., Adamson, E., English, C., et al. (2004). Identification of promoters bound by c-Jun/ATF2 during rapid large-scale gene activation following genotoxic stress. Molecular Cell, 16, 521–535.

    Article  PubMed  CAS  Google Scholar 

  24. Lavoie, J. N., L’Allemain, G., Brunet, A., Muller, R., & Pouyssegur, J. (1996). Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. Journal of Biological Chemistry, 271, 20608–20616.

    Article  PubMed  CAS  Google Scholar 

  25. Shaulian, E., & Karin, M. (2002). AP-1 as a regulator of cell life and death. Natural Cell Biology, 4, E131–136.

    Article  CAS  Google Scholar 

  26. Vogt, P. K. (2001). Jun, the oncoprotein. Oncogene, 20, 2365–2377.

    Article  PubMed  CAS  Google Scholar 

  27. Rinehart-Kim, J., Johnston, M., Birrer, M., & Bos, T. (2000). Alterations in the gene expression profile of MCF-7 breast tumor cells in response to c-Jun. International Journal of Cancer, 88, 180–190.

    Article  CAS  Google Scholar 

  28. Kennedy, N. J., & Davis, R. J. (2003). Role of JNK in tumor development. Cell Cycle, 2, 199–201.

    PubMed  CAS  Google Scholar 

  29. Shim, J., Lee, H., Park, J., Kim, H., & Choi, E. J. (1996). A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature, 381, 804–806.

    Article  PubMed  CAS  Google Scholar 

  30. MacCorkle, R. A., & Tan, T. H. (2005). Mitogen-activated protein kinases in cell-cycle control. Cell Biochemistry and Biophysics, 43, 451–461.

    Article  PubMed  CAS  Google Scholar 

  31. Mikhailov, A., Shinohara, M., & Rieder, C. L. (2005). The p38-mediated stress-activated checkpoint. A rapid response system for delaying progression through antephase and entry into mitosis. Cell Cycle, 4, 57–62.

    PubMed  CAS  Google Scholar 

  32. Takenaka, K., Moriguchi, T., & Nishida, E. (1998). Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science, 280, 599–602.

    Article  PubMed  CAS  Google Scholar 

  33. Reinhardt, H. C., Aslanian, A. S., Lees, J. A., & Yaffe, M. B. (2007). p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38MAPK/MK2 pathway for survival after DNA damage. Cancer Cell, 11, 175–189.

    Article  PubMed  CAS  Google Scholar 

  34. Paget, S. (1889). The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Reviews, 8, 98–101.

    Google Scholar 

  35. Paget, S. (1989). The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Reviews, 8, 98–101.

    PubMed  CAS  Google Scholar 

  36. Miller-Jensen, K., Janes, K. A., Brugge, J. S., & Lauffenburger, D. A. (2007). Common effector processing mediates cell-specific responses to stimuli. Nature, 448, 604–608.

    Article  PubMed  CAS  Google Scholar 

  37. Guo, W., & Giancotti, F. G. (2004). Integrin signalling during tumour progression. Nature Reviews. Molecular Cell Biology, 5, 816–826.

    Article  PubMed  CAS  Google Scholar 

  38. Ossowski, L., & Aguirre-Ghiso, J. A. (2000). Urokinase receptor and integrin partnership: Coordination of signaling for cell adhesion, migration and growth. Current Opinion in Cell Biology, 12, 613–620.

    Article  PubMed  CAS  Google Scholar 

  39. Zavadil, J., & Bottinger, E. P. (2005). TGF-beta and epithelial-to-mesenchymal transitions. Oncogene, 24, 5764–5774.

    Article  PubMed  CAS  Google Scholar 

  40. Jemal, A., Murray, T., Ward, E., Samuels, A., Tiwari, R. C., Ghafoor, A., et al. (2005). Cancer statistics, 2005. CA Cancer Journal for Clinician, 55, 10–30.

    Article  Google Scholar 

Download references

Acknowledgements

We express our appreciation to Dr. Russell Szmulewitz for his critical and thoughtful reading of our manuscript. We thank Dr. Arieh Shalhav, Dr. Charles Brendler and the University of Chicago Section of Urology for their strong and unwavering support our metastasis suppressor protein studies. This work supported by The University of Chicago RESCUE Fund (CWR-S); DOD Ovarian Cancer Research Grant DAMD17-03-1-0169 (JH, DY), Grant RO1 CA 89569 (CWR-S, JH), DOD Ovarian Cancer Research Grant W81XWH-06-1-0041 (CWR-S), Gynecologic Cancer Foundation/Ann Schreiber Ovarian Cancer Research Grant (JH, CWR-S), support from the Department of Pathology (TL) and Graduate Training in Growth and Development T32 HD07009 (JLT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie Rinker-Schaeffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, J., Hickson, J., Lotan, T. et al. Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27, 67–73 (2008). https://doi.org/10.1007/s10555-007-9106-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9106-7

Keywords

Navigation